Qi CHEN, Tian-hong PAN, Yu-qiang LI, Hong LIN. Geographical Origin Discrimination of Taiping Houkui Tea Using Convolutional Neural Network and Near-Infrared Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2776

Search by keywords or author
- Spectroscopy and Spectral Analysis
- Vol. 41, Issue 9, 2776 (2021)

Fig. 1. Feature selection process of 1-D CNN

Fig. 2. Spectra of Taiping Houkui tea
(a): Original data; (b): Preprocessed data
(a): Original data; (b): Preprocessed data

Fig. 3. Loss function values of training set for different 1-D CNN structure

Fig. 4. CIR of different convolution kernel sizes

Fig. 5. Model structure of 1-D CNN model

Fig. 6. Prediction results of 1-D CNN model

Fig. 7. Spectral feature distribution
(a): Original spectrum; (b): First convolutional layer; (c): Second convolutional layer; (d): Third convolutional layer
(a): Original spectrum; (b): First convolutional layer; (c): Second convolutional layer; (d): Third convolutional layer
|
Table 1. Sample information
|
Table 2. Prediction results with different sampling intervals
|
Table 3. CIR of different convolution kernel number
|
Table 5. Comparison of Monte Carlo experimental results

Set citation alerts for the article
Please enter your email address