• Advanced Photonics
  • Vol. 2, Issue 1, 014002 (2020)
Yang Yu1、†, Ting-Hui Xiao2、*, Yunzhao Wu2, Wanjun Li1, Qing-Guang Zeng1, Li Long3, and Zhi-Yuan Li3、*
Author Affiliations
  • 1Wuyi University, School of Applied Physics and Materials, Jiangmen, China
  • 2University of Tokyo, Department of Chemistry, Tokyo, Japan
  • 3South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
  • show less
    DOI: 10.1117/1.AP.2.1.014002 Cite this Article Set citation alerts
    Yang Yu, Ting-Hui Xiao, Yunzhao Wu, Wanjun Li, Qing-Guang Zeng, Li Long, Zhi-Yuan Li. Roadmap for single-molecule surface-enhanced Raman spectroscopy[J]. Advanced Photonics, 2020, 2(1): 014002 Copy Citation Text show less
    References

    [1] K. A. Willets et al. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev., 43, 3854-3864(2014).

    [2] S. Laing et al. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem., 1, 0060(2017).

    [3] D. K. Lim et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol., 6, 452-460(2011).

    [4] M. Caldarola et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun., 6, 7915(2015).

    [5] E. C. Le Ru, P. G. Etchegoin. Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem., 63, 65-87(2012).

    [6] X. Shi et al. Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol., 13, 953-958(2018).

    [7] T. Itoh, Y. S. Yamamoto, Y. Ozaki. Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. Chem. Soc. Rev., 46, 3904-3921(2017).

    [8] S. Cong et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun., 6, 7800(2015).

    [9] Y. S. Yamamoto, T. Itoh. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies. J. Raman Spectrosc., 47, 78-88(2016).

    [10] S. Y. Ding et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater., 1, 16021(2016).

    [11] J. F. Li et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 464, 392-395(2010).

    [12] C. M. Aikens, L. R. Madison, G. C. Schatz. Raman spectroscopy: the effect of field gradient on SERS. Nat. Photonics, 7, 508-510(2013).

    [13] A. G. Brolo. Plasmonics for future biosensors. Nat. Photonics, 6, 709-713(2012).

    [14] Y. He et al. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today, 6, 122-130(2011).

    [15] P. A. Dmitriev et al. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response. Nanoscale, 8, 9721-9726(2016).

    [16] D. Y. Wu et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev., 37, 1025-1041(2008).

    [17] J. R. Lombardi et al. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res., 42, 734-742(2009).

    [18] S. M. Wells et al. Silicon nanopillars for field-enhanced surface spectroscopy. ACS Nano, 6, 2948-2959(2012).

    [19] W. H. Park et al. Out-of-plane directional charge transfer-assisted chemical enhancement in the surface-enhanced Raman spectroscopy of a graphene monolayer. J. Phys. Chem. C, 120, 24354-24359(2016).

    [20] S. M. Feng et al. Ultrasensitive molecular sensor using n-doped graphene through enhanced Raman scattering. Sci. Adv., 2, e1600322(2016).

    [21] X. Ling et al. Can graphene be used as a substrate for Raman enhancement?. Nano Lett., 10, 553-561(2010).

    [22] X. Ling et al. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett., 14, 3033-3040(2014). https://doi.org/10.1021/nl404610c

    [23] Z. H. Zheng et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun., 8, 1993(2017).

    [24] A. Musumeci et al. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc., 131, 6040-6041(2009).

    [25] L. Yang et al. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci., 6, 1900310(2019).

    [26] H. Xu et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett., 83, 4357-4360(1999).

    [27] K. Kneipp et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett., 78, 1667-1670(1997).

    [28] S. Nie et al. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [29] Z. Zhang et al. Single molecule level plasmonic catalysis: a dilution study of p-nitrothiophenol on gold dimers. Chem. Commun., 51, 3069-3072(2015).

    [30] B. de Nijs et al. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun., 8, 994-1001(2017).

    [31] K. Zhang et al. Direct SERS tracking of a chemical reaction at a single 13 nm gold nanoparticle. Chem. Sci., 10, 1741-1745(2019).

    [32] S. Jiang et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol., 10, 865-869(2015).

    [33] S. Jiang et al. Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light Sci. Appl., 6, e17098(2017).

    [34] J. Lee et al. Microscopy with a single-molecule scanning electrometer. Sci. Adv., 4, eaat5472(2018).

    [35] Y. Li et al. Voltage tuning of vibrational mode energies in single-molecule junctions. Proc. Natl. Acad. Sci. U. S. A., 111, 1282-1287(2014).

    [36] R. Han et al. Investigation of charge transfer at the TiO2–MBA–Au interface based on surface-enhanced Raman scattering: SPR contribution. Phys. Chem. Chem. Phys., 20, 5666-5673(2018).

    [37] C. Artur et al. Temperature dependence of the homogeneous broadening of resonant Raman peaks measured by single-molecule surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett., 2, 3002-3005(2011).

    [38] S. Yampolsky et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photonics, 8, 650-656(2014).

    [39] X. Chen et al. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun., 10, 2567(2019).

    [40] N. C. Lindquist et al. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol., 14, 981-987(2019).

    [41] S. Hayashi, Y. Okada. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics. Mol. Biol. Cell, 26, 1743-1751(2015).

    [42] A. B. Evlyukhin et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett., 12, 3749-3755(2012).

    [43] P. G. Etchegoin, E. C. Le Ru. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys., 10, 6079-6089(2008).

    [44] M. D. Morris, D. J. Wallan. Resonance Raman spectroscopy. Current applications and prospects. Anal. Chem., 51, 182A-192A(1979).

    [45] E. C. Le Ru et al. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J. Chem. Phys., 125, 204701(2006).

    [46] K. Kneipp et al. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett., 76, 2444-2447(1996).

    [47] D. Wang et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett., 13, 2194-2198(2013).

    [48] Y. Zhang et al. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun., 5, 4424-4430(2014).

    [49] P. C. Andersen, M. L. Jacobson, K. L. Rowlen. Flashy silver nanoparticles. J. Phys. Chem. B, 108, 2148-2153(2004).

    [50] W. E. Doering, S. Nie. Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B, 106, 311-317(2002).

    [51] J. Jiang et al. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B, 107, 9964-9972(2003).

    [52] K. A. Bosnick, J. Jiang, L. E. Brus. Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J. Phys. Chem. B, 106, 8096-8099(2002).

    [53] K. Imura et al. Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. Nano Lett., 6, 2173-2176(2006).

    [54] E. C. Le Ru, M. Meyer, P. G. Etchegoin. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B, 110, 1944-1948(2006).

    [55] E. Blackie et al. Bi-analyte SERS with isotopically edited dyes. Phys. Chem. Chem. Phys., 10, 4147-4153(2008).

    [56] R. H. Lahr, P. J. Vikesland. Surface-enhanced Raman spectroscopy (SERS) cellular imaging of intracellularly biosynthesized gold nanoparticles. ACS Sustainable Chem. Eng., 2, 1599-1608(2014).

    [57] J. Lin et al. Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection. J. Raman Spectrosc., 44, 497-502(2013).

    [58] A. Geeraerts et al. Systematic palynology in Ebenaceae with focus on Ebenoideae: morphological diversity and character evolution. Rev. Palaeobot. Palynol., 153, 336-353(2009).

    [59] E. C. Le Ru et al. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B, 110, 1944-1948(2006).

    [60] Z. Fang et al. Rapid classification of honey varieties by surface enhanced Raman scattering combining with deep learning. Cross Strait Quad-Regional Radio Sci. and Wireless Technol. Conf.(2018).

    [61] Z.-Y. Li. Mesoscopic and microscopic strategies for engineering plasmon-enhanced Raman scattering. Adv. Opt. Mater., 6, 1701097(2018).

    [62] M. Fleischmann, P. J. Hendra, A. J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 26, 163-166(1974).

    [63] D. L. Jeanmaire, R. P. Van Duyne. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem., 84, 1-20(1977).

    [64] M. G. Albrecht, J. A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc., 99, 5215-5217(1977).

    [65] W. Li et al. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett., 9, 485-490(2009).

    [66] H. Wei et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle–nanowire systems. Nano Lett., 8, 2497-2502(2008).

    [67] H. Tamaru et al. Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl. Phys. Lett., 80, 1826-1828(2002).

    [68] E. J. Blackie et al. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J. Am. Chem. Soc., 131, 14466-14472(2009).

    [69] D. K. Lim et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater., 9, 60-67(2010).

    [70] V. V. Thacker et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun., 5, 3448-3454(2014).

    [71] J. Fang et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett., 10, 5006-5013(2010).

    [72] Z. Liu et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun., 2, 305(2011).

    [73] R. Zhang et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [74] J. Li et al. Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing. Laser Photonics Rev., 8, 602-609(2014).

    [75] J. Mu et al. Direct laser writing of pyramidal plasmonic structures with apertures and asymmetric gratings towards efficient subwavelength light focusing. Opt. Express, 23, 22564-22571(2015).

    [76] E. C. Lin et al. Effective localized collection and identification of airborne species through electrodynamic precipitation and SERS-based detection. Nat. Commun., 4, 1636(2013).

    [77] C. Chen et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun., 9, 1733(2018).

    [78] P. Mao et al. Broadband single molecule SERS detection designed by warped optical spaces. Nat. Commun., 9, 5428(2018).

    [79] S. Yang et al. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. U. S. A., 113, 268-273(2016).

    [80] J. R. Lombardi et al. Charge- transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. J. Chem. Phys., 84, 4174-4180(1986).

    [81] P. Hildebrandt, M. Stockburger. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem., 88, 5935-5944(1984).

    [82] P. Hildebrand, M. Stockburger. Surface-enhanced resonance Raman spectroscopy of cytochrome c at room and low temperatures. J. Phys. Chem., 90, 6017-6024(1986).

    [83] E. K. Pozzi et al. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chem. Rev., 117, 4961-4982(2017).

    [84] Z. L. Zhang et al. Tip-enhanced Raman spectroscopy. Anal. Chem., 88, 9328-9346(2016).

    [85] A. B. Zrimsek et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev., 117, 7583-7613(2017).

    [86] X. Shi et al. Advances in tip-enhanced near-field Raman microscopy using nanoantennas. Chem. Rev., 117, 4945-4960(2017).

    [87] P. Verma. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev., 117, 6447-6466(2017).

    [88] M. Richard-Lacroix et al. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev., 46, 3922-3944(2017).

    [89] X. Wang et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev., 46, 4020-4041(2017).

    [90] C. Zhang, B. Q. Chen, Z. Y. Li. Optical origin of subnanometer resolution in tip-enhanced Raman mapping. J. Phys. Chem. C, 119, 11858-11871(2015).

    [91] M. J. Limo et al. Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem. Rev., 118, 11118-11193(2018).

    [92] A. B. Djurisic et al. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small, 11, 26-44(2015).

    [93] L. Da Via et al. Visible light selective photocatalytic conversion of glucose by TiO2. Appl. Catal. B, 202, 281-288(2017). https://doi.org/10.1016/j.apcatb.2016.08.035

    [94] N. Chen et al. Electronic logic gates from three-segment nanowires featuring two p-n heterojunctions. NPG Asia Mater., 5, e59-e63(2013).

    [95] K. E. Shafer-Peltier et al. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc., 125, 588-593(2003).

    [96] E. Cortes et al. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc., 132, 18034-18037(2010).

    [97] J. Zheng et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci., 9, 5033-5038(2018).

    [98] P. P. Patra et al. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nat. Commun., 5, 4357(2014).

    [99] K. L. Kelly et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668-677(2003).

    [100] A. Otto. What is observed in single molecule SERS, and why?. J. Raman Spectrosc., 33, 593-598(2002).

    [101] D. P. Tsai et al. Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. Phys. Rev. Lett., 72, 4149-4152(1994).

    [102] P. G. Etchegoin et al. Statistics of single-molecule surface enhanced Raman scattering signals: fluctuation analysis with multiple analyte techniques. Anal. Chem., 79, 8411-8415(2007).

    CLP Journals

    [1] Mark I. Stockman. Brief history of spaser from conception to the future[J]. Advanced Photonics, 2020, 2(5): 054002

    [2] Xi Xie, Xianyou Wang, Changjun Min, Haixiang Ma, Yunqi Yuan, Zhangyu Zhou, Yuquan Zhang, Jing Bu, Xiaocong Yuan. Single-particle trapping and dynamic manipulation with holographic optical surface-wave tweezers[J]. Photonics Research, 2022, 10(1): 166

    Yang Yu, Ting-Hui Xiao, Yunzhao Wu, Wanjun Li, Qing-Guang Zeng, Li Long, Zhi-Yuan Li. Roadmap for single-molecule surface-enhanced Raman spectroscopy[J]. Advanced Photonics, 2020, 2(1): 014002
    Download Citation