• Journal of Inorganic Materials
  • Vol. 35, Issue 12, 1307 (2020)
Jinmin WANG, Hongyu YU, and Dongyun MA
Author Affiliations
  • School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
  • show less
    DOI: 10.15541/jim20200105 Cite this Article
    Jinmin WANG, Hongyu YU, Dongyun MA. Progress in the Preparation and Application of Nanostructured Manganese Dioxide[J]. Journal of Inorganic Materials, 2020, 35(12): 1307 Copy Citation Text show less
    References

    [1] K SUN, S Y LI, M G WAIGI et al. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways. Environmental Science & Pollution Research, 25, 14416-14425(2018).

    [2] J K SEO, J W SHIN, H CHUNG et al. Intercalation and conversion reactions of nanosized β-MnO2 cathode in the secondary Zn/MnO2 alkaline battery. The Journal of Physical Chemistry C, 122, 11177-11185(2018).

    [3] F XUE, S WU, M X WANG et al. A three-dimensional graphene/ CNT/MnO2 hybrid as supercapacitor electrode. Integrated Ferroelectrics, 190, 156-163(2018).

    [4] X GU, J YUE, L J LI et al. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochimica Acta, 184, 250-256(2015).

    [5] Q FENG, H KANOH, K OOI. Manganese oxide porous crystals. Journal of Materials Chemistry, 9, 319-333(1999).

    [6] J E POST. Manganese oxide minerals: crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 96, 3447-3454(1999).

    [7] Z J JIA, J WANG, Y WANG et al. Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors. Journal of Materials Science & Technology, 32, 147-152(2016).

    [8] Y J HUANG, W S LI. Preparation of manganese dioxide for oxygen reduction in zinc air battery by hydro thermal method. Journal of Inorganic Materials, 28, 341-346(2013).

    [9] J G WEN, X Y RUAN, Z T ZHOU. Characterization of MnO2 aerogels prepared via supercritical drying technique. Journal of Inorganic Materials, 24, 521-524(2009).

    [10] X Z XIAO, Q F YI. Synthesis and electochemical capacity of MnO2/SMWCNT/PANI ternarycomposites. Journal of Inorganic Materials, 28, 825-830(2013).

    [11] J A DARR, J Y ZHANG, N M MAKWANA et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chemical Reviews, 117, 11125-11238(2017).

    [12] P ZHAO, M Q YAO, H B REN et al. Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Applied Surface Science, 463, 931-938(2019).

    [13] F F WU, X B GAO, X L XU et al. Boosted Zn storage performance of MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth via a facile wet-chemical synthesis. ChemSusChem, 13, 1537-1545(2020).

    [14] C J LU, F Q ZHU, J G YIN et al. Synthesis of α-MnO2 nanowires via facile hydrothermal method and their application in Li-O2 battery. Journal of Inorganic Materials, 33, 1029-1034(2018).

    [15] K ZHU, C WANG, P H C CAMARGO et al. Investigating the effect of MnO2 band gap in hybrid MnO2-Au materials over the SPR-mediated activities under visible light. Journal of Materials Chemistry A, 7, 925-931(2019).

    [16] L WANG, W L MA, Y H LI et al. Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method. Journal of Sol-Gel Science and. Technology, 82, 85-91(2017).

    [17] Z C MA, X Y WEI, S T XING et al. Hydrothermal synthesis and characterization of surface-modified δ-MnO2 with high Fenton-like catalytic activity. Catalysis Communications, 67, 68-71(2015).

    [18] D Y LIU, L M DONG, L W SHAN et al. Preparation of Fe-MnO2/RGO electrode and electrochemical properties. Ferroelectrics, 546, 41-47(2019).

    [19] Y M XIE, L J WANG, Q Y GUO et al. Preparation of MnO2/porous carbon material with core-shell structure and its application in supercapacitor. Journal of Materials Science Materials in Electronics, 29, 1-8(2018).

    [20] A MATHUR, A HALDER. One step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc-air batteries. Catalysis Science & Technology, 9, 1245-1254(2019).

    [21] P JITTIARPORN, S BADILESCU, SAWAFTA M N Al et al. Electrochromic properties of Sol-Gel prepared hybrid transition metal oxides - a short review. Journal of Science: Advanced Materials and Devices, 2, 286-300(2017).

    [22] M A MOHAMED, W N W SALLEH, J JAAFAR et al. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: bio-template assisted Sol-Gel synthesis and photocatalytic activity. Applied Surface Science, 393, 46-59(2017).

    [23] X Y WANG, X Y WANG, W G HUANG et al. Sol-Gel template synthesis of highly ordered MnO2 nanowire arrays. Journal of Power Sources, 140, 211-215(2005).

    [26] F L THEISS, G A AYOKO, R L FROST. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-a review. Applied Surface Science, 383, 200-213(2016).

    [27] X L LI, J F ZHU, Y H JIAO et al. Manganese dioxide morphology on electrochemical performance of Ti3C2Tx@MnO2 composites. Journal of Inorganic Materials, 35, 119-125(2020).

    [28] P MAHAMALLIK, S SAHA, A PAL. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chemical Engineering Journal, 276, 155-165(2015).

    [32] J SHIN, J K SEO, R YAYLIAN et al. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. International Materials Reviews, 1-32(2019).

    [33] P M SHAFI, A C BOSE. Structural evolution of tetragonal MnO2 and its electrochemical behavior. AIP Conference Proceedings, 050038(1731).

    [34] S D HAN, S KIM, D G LI et al. Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chemistry of Materials, 29, 4874-4884(2017).

    [35] A S ZERAATI, M ARJMAND, U SUNDARARAJ. Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: materials with high dielectric permittivity and low dielectric loss. ACS Applied Materials & Interfaces, 9, 14328-14336(2017).

    [36] S REHMAN, T Y TANG, Z ALI et al. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small, 13, 1700087(2017).

    [37] P F LUO, Z HUANG. Fabrication of scandium-doped lithium manganese oxide as a high-rate capability cathode material for lithium energy storage. Solid State Ionics, 338, 20-24(2019).

    [38] Y M WANG, F WANG, X J FENG. Porous nest-like LiMnPO4 microstructures assembled by nanosheets for lithium ion battery cathodes. Journal of Materials Science: Materials in Electronics, 29, 1426-1434(2018).

    [40] J X ZHAO, G H WANG, Q ZHANG et al. An underlying intercalation ion for fast-switching and stable electrochromism. Journal of Materials Science Materials in Electronics, 30, 12753-12756(2019).

    [41] Y R LIU, S RYOTA, L H CHEUK et al. Electrochromic triphenylamine-based cobalt (II) complex nanosheets. Journal of Materials Chemistry C, 7, 9159-9166(2019).

    [42] C W CHEN, A N BRIGEMAN, T J HO et al. Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal. Optical Materials Express, 8, 691(2018).

    [43] Z Q TONG, S K LIU, X G LI et al. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. Nanoscale, 10, 3254-3261(2018).

    [44] A CANNAVALE, U AYR, F FIORITO et al. Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies, 13, 1449(2020).

    [45] C BECHINGER, S FERRERE, A ZABAN et al. Photoelectrochromic windows and displays. Nature, 383, 608-610(1996).

    [46] S I CHO, W J KWON, S J CHOI et al. Nanotube-based ultrafast electrochromic display. Advanced Materials, 17, 171-175(2005).

    [47] D ZHOU, B Y CHE, X H LU. Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials. Journal of Materials Chemistry C, 1758-1766(2017).

    [48] N SAKAI, Y EBINA, K TAKADA et al. Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency. Journal of the Electrochemical Society, 152, E384-E389(2005).

    [49] S S FALAHATGAR, F E GHODSI, F Z TEPEHAN et al. Electrochromic performance of Sol-Gel derived amorphous MnO2-ZnO nanogranular composite thin films. Journal of Non-Crystalline Solids, 427, 1-9(2015).

    [50] W M LYU, L YANG, B B FAN et al. Silylated MgAl LDHs intercalated with MnO2 nanowires: highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene. Chemical Engineering Journal, 263, 309-316(2015).

    [51] F WANG, H X DAI, J G DENG et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environmental Science & Technology, 46, 4034-4041(2012).

    [52] L QI, Z YAN, Y HUO et al. MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag+ ions. Biosensors and Bioelectronics, 87, 566-571(2017).

    [53] F XIAO, Y Q LI, H C GAO et al. Growth of coral-like PtAu-MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosensors & Bioelectronics, 41, 417-423(2013).

    Jinmin WANG, Hongyu YU, Dongyun MA. Progress in the Preparation and Application of Nanostructured Manganese Dioxide[J]. Journal of Inorganic Materials, 2020, 35(12): 1307
    Download Citation