• Laser & Optoelectronics Progress
  • Vol. 57, Issue 20, 203001 (2020)
Mengran Zhou, Jinguo Wang*, Hongping Song, Feng Hu, Wenhao Lai, and Kai Bian
Author Affiliations
  • College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • show less
    DOI: 10.3788/LOP57.203001 Cite this Article Set citation alerts
    Mengran Zhou, Jinguo Wang, Hongping Song, Feng Hu, Wenhao Lai, Kai Bian. Application of Kernel Extreme Learning Machine and Laser Induction Fluorescence Technique in Edible Oil Identification[J]. Laser & Optoelectronics Progress, 2020, 57(20): 203001 Copy Citation Text show less

    Abstract

    Existing edible oil detection technology cannot quickly and accurately identify edible oils sold in markets. Hence, in this paper, we propose a quick method of identifying edible oils. Fluorescence spectrum data of oil samples were obtained using the laser induction fluorescence(LIF) technique. Principal component analysis was used to extract characteristic information. Next, a multiclassification learning model was developed through the fusion algorithm of moth-flame optimization and kernel extreme learning machine (KELM) to identify the type of oil samples. Five types of oil samples were selected for experimental purposes, and 150 groups of fluorescence spectra were collected from each sample. Next, 600 samples were randomly selected to train the learning model, and the remaining 150 samples were used to test the trained model. Experimental results show that KELM model , extreme learning machine model and back propagation neural network model have similar average classification accuracy on the test set. However, the standard deviation of KELM model is less than those of other two models. This shows that KELM model has a stable classification performance and can quickly identify edible oils.
    Mengran Zhou, Jinguo Wang, Hongping Song, Feng Hu, Wenhao Lai, Kai Bian. Application of Kernel Extreme Learning Machine and Laser Induction Fluorescence Technique in Edible Oil Identification[J]. Laser & Optoelectronics Progress, 2020, 57(20): 203001
    Download Citation