• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 71405 (2018)
Ge Maozhong1、*, Xiang Jianyun2, and Tang Yang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.071405 Cite this Article Set citation alerts
    Ge Maozhong, Xiang Jianyun, Tang Yang. Effect of Laser Shock Processing on Fatigue Crack Growth Rate of TC4 Repaired Parts[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71405 Copy Citation Text show less
    References

    [1] Nie X F, He W F, Zhou L C, et al. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance[J]. Materials Science and Engineering A, 2014, 594: 161-167.

    [2] Editorial committee of Chinese manufacturing. Made in China 2025[M]. Beijing: People Press, 2015: 1-62.

    [3] Huang W D. Laser additive manufacturing[M]. Xi′an: Northwestern Polytechnical University Press, 2007.

    [4] Gong X Y, Liu M K, Li Y, et al. Research on repair of TC11 titanium alloy components by laser melting deposition process[J]. Chinese Journal of Lasers, 2012, 39(2): 0203005.

    [5] Bendeich P, Alam N, Brandt M, et al. Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry[J]. Materials Science and Engineering A, 2006, 437(1): 70-74.

    [6] Lin C M. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade[J]. Vacuum, 2015, 115: 117-123.

    [7] Zhou J Z, Huang S, Zuo L D, et al. Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-Al- titanium alloy[J]. Optics and Laser in Engineering, 2014, 52: 189-194.

    [8] Ren X D, Zhang Y K, Zhang T, et al. Comparison of the simulation and experimental fatigue crack behaviors in the nanoseconds laser shocked aluminum alloy[J]. Materials & Design, 2011, 32(3): 1138-1143.

    [9] Lu J Z, Luo K Y, Dai F Z, et al. Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel[J]. Materials Science and Engineering A, 2012, 536: 57-63.

    [10] Sealy M P, Guo Y B, Caslaru R C, et al. Fatigue performance of biodegradable magnesium-calcium alloy processed by laser shock peening for orthopedic implants[J]. International Journal of Fatigue, 2016, 82: 428-436.

    [11] Ge M Z, Xiang J Y, Yang L, et al. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid[J]. Surface & Coatings Technology, 2017, 310: 157-165.

    [12] Yan S X, Dong S Y, Xu B S, et al. Mechanics of removing residual stress of Fe314 cladding layers with laser shock processing[J]. Chinese Journal of Lasers, 2013, 40(10): 1003004.

    [13] Wang C, Lai Z L, An Z B, et al. Properties improvement of laser cladded TC4 titanium alloy by laser shock processing[J]. Journal of Jiangsu University, 2013, 34(3): 331-334.

    [14] He W F, Zhang J, Yang Z J, et al. Fatigue properties research of titanium alloy repaired by laser cladding and laser shock processing[J]. Chinese Journal of Lasers, 2015, 42(11): 1103008.

    [15] Luo K Y, Zhou Y, Lu J Z, et al. Influence of laser shock peening on microstructure and property of cladding layer of 316L stainless steel[J]. Chinese Journal of Lasers, 2017, 44(4): 0402005.

    [16] Ge M Z, Xiang J Y, Yang X H. Effects of laser cladding remanufacturing on microstructure and impact toughness of TC4 titanium alloy[J]. Hot Working Technology, 2017, 46(20): 178-182.

    [17] Hou L F, Wei Y H, Shu X F, et al. Nanocrystalline structure of magnesium alloys subjected to high energy shot peening[J]. Journal of Alloys and Compounds, 2010, 492(1/2): 347-350.

    [18] Shu D L. Metal mechanical properties[M]. Beijing: China Machine Press, 1999: 1-169.

    [19] Huang S, Zhu Y, Guo W, et al. Effect of laser peening on fatigue strength of TC17 titanium alloys[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111406.

    Ge Maozhong, Xiang Jianyun, Tang Yang. Effect of Laser Shock Processing on Fatigue Crack Growth Rate of TC4 Repaired Parts[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71405
    Download Citation