• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 6, 1092 (2022)
Xian-Guo LI1、2、*, Ming-Teng CAO1, Bin LI1, Yi LIU1、2, and Chang-Yun MIAO1、2
Author Affiliations
  • 1School of Electronics and Information Engineering,Tiangong University,Tianjin 300387,China
  • 2Tianjin Key Laboratory of Optoelectronic Detection Technology and System,Tianjin 300387,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.06.019 Cite this Article
    Xian-Guo LI, Ming-Teng CAO, Bin LI, Yi LIU, Chang-Yun MIAO. GPNet:Lightweight infrared image target detection algorithm[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1092 Copy Citation Text show less
    References

    [1] J Han, Y Yu, K Liang et al. Infraredsmall-target detection under complex background based on subblock-level ratio-difference joint local contrast measure. Optical Engineering, 57, 103105(2018).

    [2] Tong-shun LI, Yong XI, Jian-Fei YIN. Analysis of the development of key technologies for air-to-air infrared gui-dance. Shanghai Aerospace.

    [3] L Fang, X Wang, Y Wan. Adaptable active contour model with applicationsto infrared ship target segmentation. Journal of Electronic Imaging, 25, 041010(2016).

    [4] L Zhang, B Wu, R Nevatia. Pedestrian detection in infrared images based on local shape features, 1-8(2007).

    [5] J Ge, Y Luo, G Tei. Real-time pedestrian detection and tracking at nighttime for driver-assistance systems. IEEE Transactions on Intelligent Transportation Systems, 10, 283-298(2009).

    [6] Xiao-Qian SU, Shao-Yuan SUN, Man GE et al. Pedestrian detection and tracking of vehicle infrared images. Laser & Infrared.

    [7] Han-Lu ZHU, Xu-Zhong ZHANG, Xin CHEN et al. Dim small targets detection based on horizontal-vertical multi-scale grayscale difference weighted bilateral filtering. J. Infrared Millim. Waves.

    [8] Ru-Hua CAI, Biao YANG, Sun-Yong WU et al. Weak Targets Box Particle Labeled Multi-bernoulli Multi-target Detection and Tracking Algorithm. J. Infrared Millim. Waves.

    [9] Y Choi, N Kim, S Hwang et al. KAIST multi-spectral day/night data set for autonomous and assisted driving. IEEE Transactions on Intelligent Transportation Systems, 19, 934-948(2018).

    [11] Y Socarrás, S Ramos, D Vázquez et al. Adapting pedestrian detection from synthetic to far infrared images, 3(2013).

    [12] D Ghose, S M Desai, S Bhattacharya et al. Pedestrian detection in thermal images using saliency maps, 1-10(2019).

    [13] C Devaguptapu, N Akolekar, M Sharma et al. Borrow from anywhere: Pseudo multi-modal object detection inthermal imagery, 1029-1038(2019).

    [14] X Dai, X Yuan, X Wei. TIRNet: Object detection in thermal infrared images for autonomous driving. Applied Intelligence, 51, 1244-1261(2021).

    [15] M Krišto, M Ivasic-Kos, M Pobar. Thermal object detection in difficult weather conditions using YOLO. IEEE access, 8, 125459-125476(2020).

    [16] X Song, S Gao, C Chen. A multispectral feature fusion network for robust pedestrian detection. Alexandria Engineering Journal, 60, 73-85(2021).

    [17] S Du, P Zhang, B Zhang et al. Weakand occluded vehicle detection in complex infrared environment based on improved YOLOv4. IEEE Access, 9, 25671-25680(2021).

    [18] Z Wu, X Wang, C Chen. Research on light weight infrared pedestrian detection model algorithm for embedded Platform. Security and Communication Networks, 2021, 1549772(2021).

    [19] S Li, Y Li, Y Li et al. YOLO-FIRI: Improved YOLOv5 for Infrared ImageObject Detection. IEEE Access, 9, 141861-141875(2021).

    [20] A Bochkovskiy, C Y Wang, H Y M Liao. Yolov4: Optimal speed and accuracy of object detection(2020).

    [21] J Yang, X Fu, Y Hu et al. PanNet: A deep network architecture for pan-sharpening, 5449-5457(2017).

    [22] K Han, Y Wang, Q Tian et al. Ghostnet: More features from cheap operations, 1580-1589(2020).

    [23] K He, X Zhang, S Ren et al. Spatialpyramid pooling in deep convolutionalnetworks for visual recognition. IEEE transactions on pattern analysis andmachine intelligence, 37, 1904-1916(2015).

    [24] A Krizhevsky, I Sutskever, G E Hinton. Imagenet classification with deep convolutional neural networks, 1097-1105(2012).

    [25] K Simonyan, A Zisserman. Very deepconvolutional networks for large-scale image recognition(2014).

    [26] K He, X Zhang, S Ren et al. Deep residual learning for image recognition, 770-778(2016).

    [27] A G Howard, M Zhu, B Chen et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications(2017).

    [28] X Zhang, X Zhou, M Lin et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices, 6848-6856(2018).

    [29] M Sandler, A Howard, M Zhu et al. Mobilenetv2: Inverted residuals and linear bottlenecks, 4510-4520(2018).

    [30] S Ioffe, C Szegedy. Batch normalization: Accelerating deep network trainingby reducing internal covariate shift, 448-456(2015).

    [31] A Bochkovskiy, C Y Wang, H Y M Liao. Yolov4: Optimal speed and accuracy of object detection(2020).

    [32] Z Huang, J Wang, X Fu et al. DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection. Information Sciences, 522, 241-258(2020).

    Xian-Guo LI, Ming-Teng CAO, Bin LI, Yi LIU, Chang-Yun MIAO. GPNet:Lightweight infrared image target detection algorithm[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1092
    Download Citation