• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1316 (2021)
Dawei ZHANG1, Liyuan ZHU2, Hongliang LU2, and Zuolin WANG1、*
Author Affiliations
  • 11. Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai 200072, China
  • 22. State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.15541/jim20210125 Cite this Article
    Dawei ZHANG, Liyuan ZHU, Hongliang LU, Zuolin WANG. Titanium Modified with ZnO Nanofilm and Fibronectin: Preventing Peri-implantitis and Biocompatibility[J]. Journal of Inorganic Materials, 2021, 36(12): 1316 Copy Citation Text show less
    References

    [1] PIERRE SIMONIS, THOMAS DUFOUR, HENRI TENENBAUM. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin. Oral Implants Res., 21, 772-777(2010).

    [2] R DIXON DOUGLAS, M LONDON ROBERT. Restorative design and associated risks for peri-implant diseases. Periodontol 2000, 81, 167-178(2019).

    [3] M DAUBERT DIANE, F WEINSTEIN BRADLEY. Biofilm as a risk factor in implant treatment. Periodontol 2000, 81, 29-40(2019).

    [4] C DE WAAL Y, V EIJSBOUTS H, G WINKEL E et al. Microbial characteristics of peri-implantitis: a case-control study. J. Periodontol, 88, 209-217(2017).

    [5] DORIGATTI DE AVILA ERICA, P LIMA BRUNO, TAKEO SEKIYA et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials, 67, 84-92(2015).

    [6] ALEXANDER SOBOLEV, ANTON VALKOV, ALEXEY KOSSENKO et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial nanoparticles. ACS Appl. Mater. Interfaces, 11, 39534-39544(2019).

    [7] ZHANG YUAN, BAILONG TAO, YE HE et al. Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy. Biomaterials, 223, 119479(2019).

    [8] M ALQATTAN, L PETERS, F YANG et al. Microstructure, mechanical behaviour and antibacterial activity of biomedical Ti-xMn-yCu alloys. J. Alloys Compd., 856, 158165(2021).

    [9] M DIEFENBECK, C SCHRADER, F GRAS et al. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials, 101, 156-164(2016).

    [10] BAOE LI, LEI ZHANG, DONGHUI WANG et al. Thermosensitive-hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Mat. Sci. Eng. C-Mater., 122, 111878(2021).

    [11] RAJESH KUMAR, AHMAD UMAR, GIRISHE KUMAR et al. Antimicrobial properties of ZnO nanomaterials: a review. Ceram. Int., 43, 3940-3961(2017).

    [12] FEN YU, XUAN FANG, HUIMIN JIA et al. Zn or O? An atomic level comparison on antibacterial activities of zinc oxides. Chemistry, 22, 8053-8058(2016).

    [13] LIYUAN ZHU, KAIPING YUAN, JIAHE YANG et al. Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsystems & Nanoengineering, 6, 30-43(2020).

    [14] SHENGRUI JIAN, YAHUI LEE. Nanoindentation-induced interfacial fracture of ZnO thin films deposited on Si(111) substrates by atomic layer deposition. J. Alloys Compd., 587, 313-317(2014).

    [15] K TAPILY, D GU, H BAUMGART et al. Mechanical and structural characterization of atomic layer deposition-based ZnO films. Semicond. Sci. Tech., 26, 115005(2011).

    [16] QIMING LUO, HUILIANG CAO, LANYU WANG et al. ZnO@ZnS nanorod-array coated titanium: good to fibroblasts but bad to bacteria. J. Colloid. Interface Sci., 579, 50-60(2020).

    [17] MOHD BAKHORI SITI KHADIJAH, SHAHROM MAHMUD, MALIK MASUDI SAM’AN et al. Cytotoxicity evaluation of ZnO-eugenol (ZOE) using different ZnO structure on human gingival fibroblast. AIP Conference Proceedings, 1865, 020008(2017).

    [18] STACY JORDAHL, LUIS SOLORIO, B NEALE DYLAN et al. Engineered fibrillar fibronectin networks as three-dimensional tissue scaffolds. Adv. Mater., 31, 1904580(2019).

    [19] Y MCWHORTER FRANCES, TINGTING WANG, PHOEBE NGUYEN et al. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. U S A, 110, 17253-17258(2013).

    [20] JUN LI, LEI TAN, XIANGMEI LIU et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine- glycine-aspartic acid-cysteine nanorods. ACS Nano, 11, 11250-11263(2017).

    [21] XIAOCHONG JIAN, WENXIU HUANG, DONG WU et al. Effect of fibronectin-coated micro-grooved titanium surface on alignment, adhesion, and proliferation of human gingival fibroblasts. Med. Sci. Monitor., 23, 4749-4759(2017).

    [22] A KRÓL, P POMASTOWSKI, K RAFIŃSKA et al. Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid. Interface Sci., 249, 37-52(2017).

    [23] THEOFILOS KOUTOUZIS, CHRISTIE EASTMAN, SASANKA CHUKKAPALLI et al. A novel rat model of polymicrobial peri-implantitis: a preliminary study. J. Periodontol., 88, e32-e41(2017).

    [24] SEIYA YAMAZAKI, CHIHIRO MASAKI, TOMOTAKA NODAI et al. The effects of hyperglycaemia on peri-implant tissues after osseointegration. J. Prosthodont Res., 64, 217-223(2020).

    Dawei ZHANG, Liyuan ZHU, Hongliang LU, Zuolin WANG. Titanium Modified with ZnO Nanofilm and Fibronectin: Preventing Peri-implantitis and Biocompatibility[J]. Journal of Inorganic Materials, 2021, 36(12): 1316
    Download Citation