• Laser & Optoelectronics Progress
  • Vol. 57, Issue 19, 192801 (2020)
Guolin Ma1、2、3, Jianli Ding1、2、3、*, and Zipeng Zhang1、2、3
Author Affiliations
  • 1College of Resources & Environmental Science, Xinjiang University, Urumqi, Xinjiang 830046, China;
  • 2Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, Xinjiang 830046, China
  • 3Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi, Xinjiang 830046, China
  • show less
    DOI: 10.3788/LOP57.192801 Cite this Article Set citation alerts
    Guolin Ma, Jianli Ding, Zipeng Zhang. Soil Organic Matter Content Estimation Based on Soil Covariate and VIS-NIR Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192801 Copy Citation Text show less
    References

    [1] Alex M B, Damien J F, Andrea K. The dimensions of soil security[J]. Geoderma, 213, 203-213(2014). http://www.sciencedirect.com/science/article/pii/S0016706113002954

    [2] Ding JL, Yu D L.Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remotesensing and electromagnetic induction instruments[J].Geoderma, 2014, 235/236: 316- 322.

    [3] Gholizadeh A, Saberioon M, Ben-Dor E et al. Monitoring of selected soil contaminants using proximal and remote sensing techniques: background, state-of-the-art and future perspectives[J]. Critical Reviews in Environmental Science and Technology, 48, 243-278(2018).

    [4] Chen T, Chang Q R. Clevers J G P W, et al. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy[J]. Environmental Pollution, 206, 217-226(2015).

    [5] Gholizadeh A, Boruvka L, Saberioon M M et al. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features[J]. Soil and Water Research, 10, 218-227(2016).

    [6] Dorau K, Pohl L, Just C et al. Soil organic matter and phosphate sorption on natural and synthetic Fe oxides under in situ conditions[J]. Environmental Science & Technology, 53, 13081-13087(2019).

    [7] Wang D, Tian X P, Zhang Z Y. Distribution of various forms iron, manganese, copper, zinc and relationship between organic matter and various forms on lessive[J]. Journal of Tianjin Agricultural University, 23, 14-17, 22(2016).

    [8] Rietz D N, Haynes R J. Effects of irrigation-induced salinity and sodicity on soil microbial activity[J]. Soil Biology and Biochemistry, 35, 845-854(2003).

    [9] Wang G D, Chu G X, Liu Y et al. Effects of long-term irrigation with brackish groundwater on soil microbial biomass in cotton field in arid oasis[J]. Transactions of the CSAE, 25, 44-48(2009).

    [10] Radim V, Radka K, Lubo B et al. Combining reflectance spectroscopy and the digital elevation model for soil oxidizable carbon estimation[J]. Geoderma, 303, 133-142(2017).

    [11] Fernandes M M H, Coelho A P, Fernandes C et al. Estimation of soil organic matter content by modeling with artificial neural networks[J]. Geoderma, 350, 46-51(2019).

    [12] Kweon G, Lund E, Maxton C. Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors[J]. Geoderma, 199, 80-89(2013).

    [13] Siebielec G. McCarty G W, Stuczynski T I, et al. Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J]. Journal of Environmental Quality, 33, 2056-2069(2004).

    [14] Yu L, Hong Y S, Zhou Y et al. Wavelength variable selection methods for estimation of soil organic matter content using hyperspectral technique[J]. Transactions of the CSAE, 32, 95-102(2016).

    [15] Tian M L, Ge X Y, Ding J L et al. Coupled machine learning and unmanned aerial vehicle based hyperspectral data for soil moisture content estimation[J]. Laser & Optoelectronics Progress, 57, 093002(2020).

    [16] Cheng H, Shen R L, Chen Y Y et al. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy[J]. Geoderma, 336, 59-67(2019).

    [17] van der Meer F. Acknowledgement of reviewer services to the International Journal Applied Earth Observation and Geoinformation[J]. International Journal of Applied Earth Observation and Geoinformation, 58, A1(2017).

    [18] Chen B, Zou X Y, Zhu W J. Eliminating outlier samples in near-infrared model by method of PCA-mahalanobis distance[J]. Journal of Jiangsu University (Natural Science Edition), 29, 277-279, 292(2008).

    [19] Ge X Y, Ding J L, Wang J Z et al. Estimation of soil moisture content based on competitive adaptive reweighted sampling algorithm coupled with machine learning[J]. Acta Optica Sinica, 38, 1030001(2018).

    [20] Savitzky A. Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 36, 1627-1639(1964). http://www.emeraldinsight.com/servlet/linkout?suffix=b18&dbid=16&doi=10.1108%2F03699420610638030&key=10.1021%2Fac60214a047

    [21] Isaksson T, Næs T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy[J]. Applied Spectroscopy, 42, 1273-1284(1988).

    [22] Viscarra Rossel R A, Behrens T, Ben-Dor E et al. A global spectral library to characterize the world's soil[J]. Earth-Science Reviews, 155, 198-230(2016).

    [23] Zhang Z P, Ding J L, Wang J Z. Spectral characteristics of oasis soil in arid area based on harmonic analysis algorithm[J]. Acta Optica Sinica, 39, 0228003(2019).

    [24] Weng Y L, Gong P, Zhu Z L. A spectral index for estimating soil salinity in the Yellow River Delta region of China using EO-1 Hyperion data[J]. Pedosphere, 20, 378-388(2010).

    [25] Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 58, 109-130(2001).

    [26] Xue L H, Zhou D H, Li Y et al. Prediction of soil organic matter and total phosphorus with VIS-NIR hyperspectral inversion relative to land use[J]. Acta Pedologica Sinica, 51, 993-1002(2014).

    [27] Ehrentraut D, Pollnau M. On the potential of BaSO4∶Mn 6+ for broadly tunable laser emission in the near infrared spectral region. [C]∥Conference on Lasers and Electro-Optics Europe, June 22-27, 2003, Munich, Germany. New York: IEEE, 343(2003).

    [28] Hong Y S, Shen R L, Cheng H et al. Cadmium concentration estimation in peri-urban agricultural soils: Using reflectance spectroscopy, soil auxiliary information, or a combination of both?[J]. Geoderma, 354, 113875(2019).

    [29] Hong Y S, Liu Y L, Chen Y Y et al. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy[J]. Geoderma, 337, 758-769(2019).

    [30] Jiang X Q, Ye Q, Lin Y et al. Inverting study on soil water content based on harmonic analysis and hyperspectral remote sensing[J]. Acta Optica Sinica, 37, 1028001(2017).

    [31] Ye Q, Jiang X Q, Li X C et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 48, 164-172(2017).

    [32] Shen L Z, Gao M F, Yan J W et al[J]. Estimation model of soil organic matter based on SVR and PLSR China Agricultural Informatics, 2019, 58-71.

    [33] Li G W, Gao X H, Xiao N W et al. Estimation of soil organic matter content based on characteristic variable selection and regression methods[J]. Acta Optica Sinica, 39, 0930002(2019).

    [34] Rossel R A V, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 158, 46-54(2010).

    [35] Horta A, Malone B, Stockmann U et al[J]. spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma, 241/242, 180-209(2015).

    [36] Zhao Q D, Ge X Y, Ding J L et al. Combination of fractional order derivative and machine learning algorithms for the spectral estimation of soil organic carbon content[J]. Laser & Optoelectronics Progress, 57, 153001(2020).

    [37] Chakraborty S, Man T, Paulette L et al. Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging[J]. Geoderma, 306, 108-119(2017).

    [38] O"Rourke S M, Stockmann U, Holden N M et al. An assessment of model averaging to improve predictive power of portable VIS-NIR and XRF for the determination of agronomic soil properties[J]. Geoderma, 279, 31-44(2016).

    Guolin Ma, Jianli Ding, Zipeng Zhang. Soil Organic Matter Content Estimation Based on Soil Covariate and VIS-NIR Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192801
    Download Citation