• Photonics Research
  • Vol. 11, Issue 10, 1757 (2023)
Peng Bao1, Qixiang Cheng1,*, Jinlong Wei2,3, Giuseppe Talli2..., Maxim Kuschnerov2 and Richard V. Penty1|Show fewer author(s)
Author Affiliations
  • 1Centre for Photonic Systems, Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
  • 2Huawei Technologies Duesseldolf GmbH, European Research Center, 80992 Munich, Gemany
  • 3Current address: Peng Cheng Laboratory, Shenzhen 518000, China
  • show less
    DOI: 10.1364/PRJ.492807 Cite this Article Set citation alerts
    Peng Bao, Qixiang Cheng, Jinlong Wei, Giuseppe Talli, Maxim Kuschnerov, Richard V. Penty, "Harnessing self-heating effect for ultralow-crosstalk electro-optic Mach–Zehnder switches," Photonics Res. 11, 1757 (2023) Copy Citation Text show less
    References

    [1] . 2022 Annual Report: Reimagining the future of connectivity. Cisco(2022).

    [2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, S. Sengupta. VL2: a scalable and flexible data center network. Commun. ACM, 54, 95-104(2011).

    [3] Cisco Systems. Cisco Global Cloud Index: forecast and methodology, 2016–2021(2018).

    [4] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, V. Mishra. Optically disaggregated data centers with minimal remote memory latency: technologies, architectures, and resource allocation [Invited]. J. Opt. Commun. Netw., 10, A270-A285(2018).

    [5] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C. Snoeren, G. Porter. Rotornet: a scalable, low-complexity, optical datacenter network. SIGCOMM 2017—Proceedings of the Conference of the ACM Special Interest Group on Data Communication, 267-280(2017).

    [6] L. Qiao, W. Tang, T. Chu. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep., 7, 42306(2017).

    [7] F. Testa, C. J. Oton, C. Kopp, J. M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M. S. Kim, D. Fowler, J. Á. Ayúcar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parès, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. Di Pasquale, S. Stracca. Design and implementation of an integrated reconfigurable silicon photonics switch matrix in IRIS project. IEEE J. Sel. Top. Quantum Electron., 22, 155-168(2016).

    [8] T. J. Seok, N. Quack, S. Han, R. S. Muller, M. C. Wu. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64-70(2016).

    [9] S. Han, T. J. Seok, N. Quack, B.-W. Yoo, M. C. Wu. Large-scale silicon photonic switches with movable directional couplers. Optica, 2, 370-375(2015).

    [10] K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, M. C. Wu. 128×128 silicon photonic MEMS switch with scalable row/column addressing. Conference on Lasers and Electro-Optics (CLEO), SF1A.4(2018).

    [11] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, K. Bergman. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [12] R. A. Soref, B. R. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [13] R. Konoike, H. Matsuura, K. Suzuki, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, S. Namiki, H. Kawashima, K. Ikeda. Gain-Integrated 8 × 8 silicon photonics multicast switch with on-chip 2 × 4-ch. SOAs. J. Lightwave Technol., 38, 2930-2937(2020).

    [14] N. Dupuis, F. Doany, R. A. Budd, L. Schares, C. W. Baks, D. M. Kuchta, T. Hirokawa, B. G. Lee. A 4 × 4 electrooptic silicon photonic switch fabric with net neutral insertion loss. J. Lightwave Technol., 38, 178-184(2020).

    [15] J. Zhang, C. J. Kruckel, B. Haq, B. Matuskova, J. Rimbock, S. Ertl, A. Gocalinska, E. Pelucchi, B. Corbett, J. Van Campenhout, G. Lepage, P. Verheyen, D. Van Thourhout, R. Baets, G. Roelkens. Lossless high-speed silicon photonic MZI switch with a micro-transfer-printed III-V amplifier. Proceedings—Electronic Components and Technology Conference, 441-445(2022).

    [16] N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. J. Green, B. G. Lee. Ultralow crosstalk nanosecond-scale nested 2 × 2 Mach–Zehnder silicon photonic switch. Opt. Lett., 41, 3002-3005(2016).

    [17] Z. Lu, D. Celo, H. Mehrvar, E. Bernier, L. Chrostowski. High-performance silicon photonic tri-state switch based on balanced nested Mach-Zehnder interferometer. Sci. Rep., 7, 12244(2017).

    [18] N. Dupuis, J. E. Proesel, H. Ainspan, C. W. Baks, M. Meghelli, B. G. Lee. Nanosecond-scale shift-and-dump Mach–Zehnder switch. Opt. Lett., 44, 4614-4616(2019).

    [19] J. Jiang, D. J. Goodwill, P. Dumais, D. Celo, C. Zhang, H. Mehrvar, M. Rad, E. Bernier, M. Li, F. Zhao, C. Zhang, J. He, Y. Ding, Y. Wei, W. Liu, X. Tu, D. Geng. 16 × 16 silicon photonic switch with nanosecond switch time and low-crosstalk architecture. 45th European Conference on Optical Communication, 1-4(2019).

    [20] L. Lu, X. Li, W. Gao, X. Li, L. Zhou, J. Chen. Silicon non-blocking 4 × 4 optical switch chip integrated with both thermal and electro-optic tuners. IEEE Photon. J., 11, 6603209(2019).

    [21] N. Dupuis, J. E. Proesel, N. Boyer, H. Ainspan, C. W. Baks, F. Doany, E. Cyr, B. G. Lee. An 8×8 silicon photonic switch module with nanosecond-scale reconfigurability. Optical Fiber Communications Conference and Exhibition (OFC), Th4A.6(2020).

    [22] L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, J. Chen. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt. Express, 24, 9295-9307(2016).

    [23] N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. J. Green, C. L. Schow. Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach-Zehnder silicon photonic switches. J. Lightwave Technol., 33, 3597-3606(2015).

    [24] J. Xing, Z. Li, Y. Yu, J. Yu. Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration. Opt. Lett., 38, 4774-4776(2013).

    [25] M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technol. Lett., 16, 2514-2516(2004).

    [26] K. Iino, T. Kita. Ultrafast operation of Si thermo-optic switch using differential control method. Jpn. J. Appl. Phys., 62, 012002(2023).

    [27] K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, K. Ikeda, S. Namiki, H. Kawashima. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express, 23, 9086-9092(2015).

    [28] J. Komma, C. Schwarz, G. Hofmann, D. Heinert, R. Nawrodt. Thermo-optic coefficient of silicon at 1550  nm and cryogenic temperatures. Appl. Phys. Lett., 101, 041905(2012).

    [29] M. Nedeljkovic, R. Soref, G. Z. Mashanovich. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range. IEEE Photon. J., 3, 1171-1180(2011).

    [30] M. Novarese, S. R. Garcia, S. Cucco, D. Adams, J. Bovington, M. Gioannini. Study of nonlinear effects and self-heating in a silicon microring resonator including a Shockley-Read-Hall model for carrier recombination. Opt. Express, 30, 14341-14357(2022).

    [31] A. Amerasekera, M.-C. Chang, J. A. Seitchik, A. Chatterjee, K. Mayaram, J.-H. Chem. Self-heating effects in basic semiconductor structures. IEEE Trans. Electron. Devices, 40, 1836-1844(1993).

    [32] https://optics.ansys.com/hc/en-us/articles/360034917693-CHARGE-solver-introduction. https://optics.ansys.com/hc/en-us/articles/360034917693-CHARGE-solver-introduction

    [33] M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, D. V. Plant. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express, 27, 10456-10471(2019).

    [34] A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, A. Adibi. Sub-100-nanosecond thermal reconfiguration of silicon photonic devices. Opt. Express, 21, 15706-15718(2013).

    [35] R. Corkish, M. A. Green. Junction recombination current in abrupt junction diodes under forward bias. J. Appl. Phys., 80, 3083-3090(1996).

    [36] H. Morino, T. Maruyama, K. Iiyama. Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler. J. Lightwave Technol., 32, 2188-2192(2014).

    [37] P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, A. Melloni, P. Bassi. Tunable silicon photonics directional coupler driven by a transverse temperature gradient. Opt. Lett., 38, 863-865(2013).

    [38] R. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43(1995).

    [39] P. Huang, K. Chen, L. Liu. Fabrication-tolerant directional couplers on thin-film lithium niobate. Opt. Lett., 48, 1264-1267(2023).

    [40] S. Chen, Y. Shi, S. He, D. Dai. Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers. Opt. Lett., 41, 836-839(2016).

    [41] L. B. Dano, S. L. Lee, W. H. Fang. Compact and broadband asymmetric curved directional couplers using the silicon-on-insulator (SOI) platform. 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 1-3(2019).

    [42] T. Nishi, T. Yamamoto, S. Kuroyanagi. A polarization-controlled free-space photonic switch based on a PI-LOSS switch. IEEE Photonics Technol. Lett., 5, 1104-1106(1993).

    [43] C.-C. Lu, R. A. Thompson. The double-layer network architecture for photonic switching. J. Lightwave Technol., 12, 1482-1489(1994).

    [44] N. Dupuis, B. G. Lee. Impact of topology on the scalability of Mach-Zehnder-based multistage silicon photonic switch networks. J. Lightwave Technol., 36, 763-772(2018).

    [45] Y. Liu, J. M. Shainline, X. Zeng, M. A. Popović. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt. Lett., 39, 335-338(2014).

    [46] L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si Waveguides. IEEE Photonics Technol. Lett., 22, 1744-1746(2010).

    [47] R. Ramaswami, K. N. Sivarajan, G. H. Sasaki. Optical Networks: A Practical Perspective, 305-307(2009).

    Peng Bao, Qixiang Cheng, Jinlong Wei, Giuseppe Talli, Maxim Kuschnerov, Richard V. Penty, "Harnessing self-heating effect for ultralow-crosstalk electro-optic Mach–Zehnder switches," Photonics Res. 11, 1757 (2023)
    Download Citation