• Photonics Research
  • Vol. 12, Issue 3, 571 (2024)
Luojia Wang1, Da-Wei Wang2, Luqi Yuan1、6、*, Yaping Yang3、7、*, and Xianfeng Chen1、4、5、8、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Interdisciplinary Center for Quantum Information and State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, and School of Physics, Zhejiang University, Hangzhou 310027, China
  • 3MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 5Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 6e-mail: yuanluqi@sjtu.edu.cn
  • 7e-mail: yang_yaping@tongji.edu.cn
  • 8e-mail: xfchen@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.506450 Cite this Article Set citation alerts
    Luojia Wang, Da-Wei Wang, Luqi Yuan, Yaping Yang, Xianfeng Chen. Extreme single-excitation subradiance from two-band Bloch oscillations in atomic arrays[J]. Photonics Research, 2024, 12(3): 571 Copy Citation Text show less
    References

    [1] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041-1093(2010).

    [2] V. Giovannetti, S. Lloyd, L. Maccone. Advances in quantum metrology. Nat. Photonics, 5, 222-229(2011).

    [3] B. Olmos, D. Yu, Y. Singh. Long-range interacting many-body systems with alkaline-earth-metal atoms. Phys. Rev. Lett., 110, 143602(2013).

    [4] A. González-Tudela, C.-L. Hung, D. E. Chang. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nat. Photonics, 9, 320-325(2015).

    [5] R. T. Sutherland, F. Robicheaux. Collective dipole-dipole interactions in an atomic array. Phys. Rev. A, 94, 013847(2016).

    [6] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht. Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic arrays. Phys. Rev. X, 7, 031024(2017).

    [7] E. Shahmoon, D. S. Wild, M. D. Lukin. Cooperative resonances in light scattering from two-dimensional atomic arrays. Phys. Rev. Lett., 118, 113601(2017).

    [8] B. X. Wang, C. Y. Zhao. Topological photonic states in one-dimensional dimerized ultracold atomic chains. Phys. Rev. A, 98, 023808(2018).

    [9] M. T. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia. Optimization of photon storage fidelity in ordered atomic arrays. New J. Phys., 20, 083048(2018).

    [10] D. E. Chang, J. S. Douglas, A. González-Tudela. Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys., 90, 031002(2018).

    [11] Y.-X. Zhang, K. Mølmer. Theory of subradiant states of a one-dimensional two-level atom chain. Phys. Rev. Lett., 122, 203605(2019).

    [12] D. F. Kornovan, N. V. Corzo, J. Laurat. Extremely subradiant states in a periodic one-dimensional atomic array. Phys. Rev. A, 100, 063832(2019).

    [13] P.-O. Guimond, A. Grankin, D. V. Vasilyev. Subradiant Bell states in distant atomic arrays. Phys. Rev. Lett., 122, 093601(2019).

    [14] R. Bekenstein, I. Pikovski, H. Pichler. Quantum metasurfaces with atom arrays. Nat. Phys., 16, 1(2020).

    [15] Y.-X. Zhang, K. Mølmer. Subradiant emission from regular atomic arrays: universal scaling of decay rates from the generalized Bloch theorem. Phys. Rev. Lett., 125, 253601(2020).

    [16] B. X. Wang, C. Y. Zhao. Topological quantum optical states in quasiperiodic cold atomic chains. Phys. Rev. A, 103, 013727(2021).

    [17] K. E. Ballantine, J. Ruostekoski. Quantum single-photon control, storage, and entanglement generation with planar atomic arrays. PRX Quantum, 2, 040362(2021).

    [18] O. Rubies-Bigorda, V. Walther, T. L. Patti. “Photon control and coherent interactions via lattice dark states in atomic arrays. Phys. Rev. Res., 4, 013110(2022).

    [19] J. Zeiher, J.-Y. Choi, A. Rubio-Abadal. Coherent many-body spin dynamics in a long-range interacting Ising chain. Phys. Rev. X, 7, 041063(2017).

    [20] S. de Léséleuc, V. Lienhard, P. Scholl. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science, 365, 775-780(2019).

    [21] T. M. Graham, M. Kwon, B. Grinkemeyer. Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett., 123, 230501(2019).

    [22] A. Glicenstein, G. Ferioli, N. Šibalić. Collective shift in resonant light scattering by a one-dimensional atomic chain. Phys. Rev. Lett., 124, 253602(2020).

    [23] J. Rui, D. Wei, A. Rubio-Abadal. A subradiant optical mirror formed by a single structured atomic layer. Nature, 583, 369-374(2020).

    [24] D. Bluvstein, A. Omran, H. Levine. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science, 371, 1355-1359(2021).

    [25] S. Ebadi, T. T. Wang, H. Levine. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 595, 227-232(2021).

    [26] G. Semeghini, H. Levine, A. Keesling. Probing topological spin liquids on a programmable quantum simulator. Science, 374, 1242-1247(2021).

    [27] D. Bluvstein, H. Levine, G. Semeghini. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604, 451-456(2022).

    [28] S. Ebadi, A. Keesling, M. Cain. Quantum optimization of maximum independent set using Rydberg atom arrays. Science, 376, 1209-1215(2022).

    [29] A. A. Svidzinsky, J.-T. Chang, M. O. Scully. Cooperative spontaneous emission of N atoms: many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators. Phys. Rev. A, 81, 053821(2010).

    [30] A. Tiranov, V. Angelopoulou, C. J. van Diepen. Collective super- and subradiant dynamics between distant optical quantum emitters. Science, 379, 389-393(2023).

    [31] A. Browaeys, T. Lahaye. Many-body physics with individually controlled Rydberg atoms. Nat. Phys., 16, 132-142(2020).

    [32] H. H. Jen, M.-S. Chang, Y.-C. Chen. Cooperative single-photon subradiant states. Phys. Rev. A, 94, 013803(2016).

    [33] D. Plankensteiner, L. Ostermann, H. Ritsch. Selective protected state preparation of coupled dissipative quantum emitters. Sci. Rep., 5, 16231(2015).

    [34] G. Facchinetti, S. D. Jenkins, J. Ruostekoski. Storing light with subradiant correlations in arrays of atoms. Phys. Rev. Lett., 117, 243601(2016).

    [35] K. E. Ballantine, J. Ruostekoski. Subradiance-protected excitation spreading in the generation of collimated photon emission from an atomic array. Phys. Rev. Res., 2, 023086(2020).

    [36] J. A. Needham, I. Lesanovsky, B. Olmos. Subradiance-protected excitation transport. New J. Phys., 21, 073061(2019).

    [37] J. Perczel, J. Borregaard, D. E. Chang. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett., 119, 023603(2017).

    [38] J. Perczel, J. Borregaard, D. E. Chang. Photonic band structure of two-dimensional atomic lattices. Phys. Rev. A, 96, 063801(2017).

    [39] R. J. Bettles, J. Minář, C. S. Adams. Topological properties of a dense atomic lattice gas. Phys. Rev. A, 96, 041603(2017).

    [40] S. Weber, S. de Léséleuc, V. Lienhard. Topologically protected edge states in small Rydberg systems. Quantum Sci. Technol., 3, 044001(2018).

    [41] A. Zhang, L. Wang, X. Chen. Tunable super- and subradiant boundary states in one-dimensional atomic arrays. Commun. Phys., 2, 157(2019).

    [42] J. Perczel, J. Borregaard, D. E. Chang. Topological quantum optics using atomlike emitter arrays coupled to photonic crystals. Phys. Rev. Lett., 124, 083603(2020).

    [43] T.-H. Yang, B.-Z. Wang, X.-C. Zhou. Quantum Hall states for Rydberg arrays with laser-assisted dipole-dipole interactions. Phys. Rev. A, 106, L021101(2022).

    [44] G. Facchinetti, J. Ruostekoski. Interaction of light with planar lattices of atoms: reflection, transmission, and cooperative magnetometry. Phys. Rev. A, 97, 023833(2018).

    [45] J. Javanainen, R. Rajapakse. Light propagation in systems involving two-dimensional atomic lattices. Phys. Rev. A, 100, 013616(2019).

    [46] M. A. N. Gisin, H. de Riedmatten. Quantum memory for photons. Phys. Today, 68, 42-47(2015).

    [47] S. Longhi. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett., 103, 123601(2009).

    [48] M. Atala, M. Aidelsburger, J. T. Barreiro. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys., 9, 795-800(2013).

    [49] G. Jotzu, M. Messer, R. Desbuquois. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 515, 237-240(2014).

    [50] Y. Ke, X. Qin, H. Zhong. Bloch-Landau-Zener dynamics in single-particle Wannier-Zeeman systems. Phys. Rev. A, 91, 053409(2015).

    [51] R. Khomeriki, S. Flach. Landau-Zener Bloch oscillations with perturbed flat bands. Phys. Rev. Lett., 116, 245301(2016).

    [52] Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin. Bloch oscillations in optical and Zeeman lattices in the presence of spin-orbit coupling. Phys. Rev. Lett., 117, 215301(2016).

    [53] Y. Zheng, S. Feng, S.-J. Yang. Chiral Bloch oscillation and nontrivial topology in a ladder lattice with magnetic flux. Phys. Rev. A, 96, 063613(2017).

    [54] X. Qiao, X.-B. Zhang, A.-X. Zhang. Dynamics and phase transitions in biased ladder systems with magnetic flux. Phys. Lett. A, 383, 3095-3100(2019).

    [55] W. Ji, K. Zhang, W. Zhang. Bloch oscillations of spin-orbit-coupled cold atoms in an optical lattice and spin-current generation. Phys. Rev. A, 99, 023604(2019).

    [56] A. Regensburger, C. Bersch, M.-A. Miri. Parity–time synthetic photonic lattices. Nature, 488, 167-171(2012).

    [57] L. Yuan, S. Fan. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. Optica, 3, 1014-1018(2016).

    [58] Y. Zhang, D. Zhang, Z. Zhang. Optical Bloch oscillation and Zener tunneling in an atomic system. Optica, 4, 571-575(2017).

    [59] M. O. Scully. Single photon subradiance: quantum control of spontaneous emission and ultrafast readout. Phys. Rev. Lett., 115, 243602(2015).

    [60] Z. Wang, H. Li, W. Feng. Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit. Phys. Rev. Lett., 124, 013601(2020).

    [61] D. Ferraro, M. Campisi, G. M. Andolina. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett., 120, 117702(2018).

    [62] G. M. Andolina, M. Keck, A. Mari. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett., 122, 047702(2019).

    [63] A. Kumar, T. Y. Wu, F. Giraldo. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon. Nature, 561, 83-87(2018).

    [64] D. O. de Mello, D. Schäffner, J. Werkmann. Defect-free assembly of 2D clusters of more than 100 single-atom quantum systems. Phys. Rev. Lett., 122, 203601(2019).

    [65] D. Barredo, S. de Léséleuc, V. Lienhard. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354, 1021-1023(2016).

    [66] M. Endres, H. Bernien, A. Keesling. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354, 1024-1027(2016).

    [67] A. Cooper, J. P. Covey, I. S. Madjarov. Alkaline-earth atoms in optical tweezers. Phys. Rev. X, 8, 041055(2018).

    [68] C. Sheng, J. Hou, X. He. Defect-free arbitrary-geometry assembly of mixed-species atom arrays. Phys. Rev. Lett., 128, 083202(2022).

    [69] Y. He, L. Ji, Y. Wang. Geometric control of collective spontaneous emission. Phys. Rev. Lett., 125, 213602(2020).

    [70] T. Hartmann, F. Keck, H. J. Korsch. Dynamics of Bloch oscillations. New J. Phys., 6, 2(2004).

    [71] A. Sipahigil, R. E. Evans, D. D. Sukachev. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 354, 847-850(2016).

    [72] F. Casola, T. van der Sar, A. Yacoby. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater., 3, 17088(2018).

    [73] T. Wang, Z. Li, Y. Li. Giant valley-polarized Rydberg excitons in monolayer WSe2 revealed by magneto-photocurrent spectroscopy. Nano Lett., 20, 7635-7641(2020).

    [74] M. Cech, I. Lesanovsky, B. Olmos. Dispersionless subradiant photon storage in one-dimensional emitter chains. arXiv(2023).

    Luojia Wang, Da-Wei Wang, Luqi Yuan, Yaping Yang, Xianfeng Chen. Extreme single-excitation subradiance from two-band Bloch oscillations in atomic arrays[J]. Photonics Research, 2024, 12(3): 571
    Download Citation