• Laser & Optoelectronics Progress
  • Vol. 56, Issue 7, 070002 (2019)
Na Han, Ting Ji*, Yanxia Cui**, Guohui Li, Hengkang Zhang, and Yuying Hao
Author Affiliations
  • Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • show less
    DOI: 10.3788/LOP56.070002 Cite this Article Set citation alerts
    Na Han, Ting Ji, Yanxia Cui, Guohui Li, Hengkang Zhang, Yuying Hao. Research Progress of Two-Dimensional Layered Perovskite Materials and Their Applications[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070002 Copy Citation Text show less
    References

    [1] D'innocenzo V, Grancini G, Alcocer M J P et al. . Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 5, 3586(2014). http://www.ncbi.nlm.nih.gov/pubmed/24710005

    [2] Hodes G. Perovskite-based solar cells[J]. Science, 342, 317-318(2013).

    [3] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 8, 506-514(2014). http://www.nature.com/nphoton/journal/v8/n7/abs/nphoton.2014.134.html

    [4] Grätzel M. The light and shade of perovskite solar cells[J]. Nature Materials, 13, 838-842(2014). http://www.ncbi.nlm.nih.gov/pubmed/25141800

    [5] Chen J N, Zhou S S, Jin S Y et al. Crystal organometal halide perovskites with promising optoelectronic applications[J]. Journal of Materials Chemistry C, 4, 11-27(2016). http://pubs.rsc.org/en/content/articlehtml/2016/tc/c5tc03417e

    [6] Wang Y, Zhang R. Photo detector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 36, 0230002(2016).

    [7] Yan P Q, Meng W D, Wang Y R et al. Si-APD single-photon detector with high stability based on auto-compensation of temperature drift[J]. Laser & Optoelectronics Progress, 54, 080403(2017).

    [8] Wang N N, Si J J, Jin Y Z et al. Solution-processed organic-inorganic hybrid perovskites: a class of dream materials beyond photovoltaic applications[J]. Acta Chimica Sinica, 73, 171-178(2015).

    [9] Xue Q F, Sun C, Hu Z C et al. Recent advances in perovskite solar cells: morphology control and interfacial engineering[J]. Acta Chimica Sinica, 73, 179-192(2015).

    [10] Jin L F, Zhang Y T, Wang H Y et al. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chinese Journal of Lasers, 41, 1008002(2014).

    [11] Song J Z, Xu L M, Li J H et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 28, 4861-4869(2016). http://www.ncbi.nlm.nih.gov/pubmed/27110705

    [12] Yang Y, You J B, Lei M. Efficient. /0033983 Al [P]. 2018-02-01.(2008).

    [13] Tan Z K, Moghaddam R S, Lai M L et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 9, 687-692(2014). http://europepmc.org/abstract/MED/25086602

    [14] Xing G C, Mathews N, Lim S S et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 13, 476-480(2014). http://www.nature.com/nmat/journal/v13/n5/abs/nmat3911.html

    [15] Yoo E J, Lyu M Q, Yun J H et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices[J]. Advanced Materials, 27, 6170-6175(2015).

    [16] Kagan C R. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science, 286, 945-947(1999).

    [17] Jiang J J, Cao F X, Wang K et al. Effect of humidity on property and stability of perovskite solar cell[J]. Journal of Materials Science and Engineering, 35, 181-186(2017).

    [18] Patel J B, Milot R L, Wright A D et al. Formation dynamics of CH3NH3PbI3 perovskite following two-step layer deposition[J]. The Journal of Physical Chemistry Letters, 7, 96-102(2016).

    [19] Ha S T, Liu X F, Zhang Q et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices[J]. Advanced Optical Materials, 2, 838-844(2014). http://www.onacademic.com/detail/journal_1000036097169310_bbdc.html

    [20] Zhang Q, Ha S T, Liu X F et al. Room-temperature near-infrared high-q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 14, 5995-6001(2014). http://www.ncbi.nlm.nih.gov/pubmed/25118830

    [21] Xing J, Liu X F, Zhang Q et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 15, 4571-4577(2015). http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b01166

    [22] Galuskin E V, Gazeev V M, Armbruster T et al. Lakargiite CaZrO3: a new mineral of the perovskite group from the north Caucasus, Kabardino-Balkaria, Russia[J]. American Mineralogist, 93, 1903-1910(2008). http://adsabs.harvard.edu/abs/2008AmMin..93.1903G

    [23] Ji D H, Zhang Y, Wang S L et al. First principle study of the B-site ordered structure perovskite BaFe0.5Nb0.5O3[J]. Journal of Hebei University (Natural Science Edition), 37, 595-604(2017).

    [24] Ma Y Z, Wang S F, Zheng L L et al. Recent research developments of perovskite solar cells[J]. Chinese Journal of Chemistry, 32, 957-963(2014). http://onlinelibrary.wiley.com/doi/10.1002/cjoc.201400435/pdf

    [25] Dou L, Wong A B, Yu Y L et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 50, 795-810(2013). http://www.ncbi.nlm.nih.gov/pubmed/26404831

    [26] Völker S F, Collavini S, Delgado J L. Organic charge carriers for perovskite solar cells[J]. ChemSusChem, 8, 3012-3028(2015). http://www.ncbi.nlm.nih.gov/pubmed/26311591

    [27] Amat A, Mosconi E, Ronca E et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting[J]. Nano Letters, 14, 3608-3616(2014). http://europepmc.org/abstract/med/24797342

    [28] Jacobsson T J, Pazoki M, Hagfeldt A et al. Goldschmidt's rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3[J]. The Journal of Physical Chemistry C, 119, 25673-25683(2015). http://pubs.acs.org/doi/10.1021/acs.jpcc.5b06436

    [29] Collings I E, Hill J A, Cairns A B et al. Compositional dependence of anomalous thermal expansion in perovskite-like ABX3 formates[J]. Dalton Transactions, 45, 4169-4178(2016). http://www.ncbi.nlm.nih.gov/pubmed/26477747

    [30] Fan Z, Sun K, Wang J. Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites[J]. Journal of Materials Chemistry A, 3, 18809-18828(2015). http://pubs.rsc.org/en/content/articlepdf/2015/ta/c5ta04235f

    [31] Saparov B, Mitzi D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 116, 4558-4596(2016). http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00715

    [32] Milot R L, Sutton R J, Eperon G E et al. Charge-carrier dynamics in 2D hybrid metal-halide perovskites[J]. Nano Letters, 16, 7001-7007(2016). http://pubs.acs.org/doi/10.1021/acs.nanolett.6b03114

    [33] Cao D H, Stoumpos C C, Farha O K et al. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society, 137, 7843-7850(2015). http://europepmc.org/abstract/MED/26020457

    [34] Manser J S, Christians J A, Kamat P V. Intriguing optoelectronic properties of metal halide perovskites[J]. Chemical Reviews, 116, 12956-13008(2016). http://europepmc.org/abstract/MED/27327168

    [35] Wang H L, Lv W Z, Tang X X et al. Two-dimensional perovskites and their applications on optoelectronic devices[J]. Progress in Chemistry, 29, 859-869(2017).

    [36] Stoumpos C C, Cao D H, Clark D J et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chemistry of Materials, 28, 2852-2867(2016). http://pubs.acs.org/doi/10.1021/acs.chemmater.6b00847

    [38] Zhang Q, Su R, Du W N et al. Advances in small perovskite-based lasers[J]. Small Methods, 1, 1700163(2017). http://onlinelibrary.wiley.com/doi/10.1002/smtd.201700163/full

    [39] Gu L L, Tavakoli M M, Zhang D Q et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires[J]. Advanced Materials, 28, 9713-9721(2016). http://europepmc.org/abstract/MED/27647134

    [40] Zhou C K, Tian Y, Khabou O et al. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions[J]. ACS Applied Materials & Interfaces, 9, 40446-40451(2017). http://europepmc.org/abstract/MED/29083158

    [41] Soufiani A M, Huang F Z, Reece P et al. Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites[J]. Applied Physics Letters, 107, 231902(2015). http://scitation.aip.org/content/aip/journal/apl/107/23/10.1063/1.4936418

    [42] Wu K W, Bera A, Ma C et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films[J]. Physical Chemistry Chemical Physics, 16, 22476-22481(2014). http://www.ncbi.nlm.nih.gov/pubmed/25247715

    [43] Sestu N, Cadelano M, Sarritzu V et al. Absorption F-sum rule for the exciton binding energy in methylammonium lead halide perovskites[J]. The Journal of Physical Chemistry Letters, 6, 4566-4572(2015). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM26517760.aspx

    [44] Takagi H, Kunugita H, Ema K. Influence of the image charge effect on excitonic energy structure in organic-inorganic multiple quantum well crystals[J]. Physical Review B, 87, 125421(2013). http://adsabs.harvard.edu/abs/2013PhRvB..87l5421T

    [45] Dammak T, Koubaa M, Boukheddaden K et al. Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial[J]. The Journal of Physical Chemistry C, 113, 19305-19309(2009). http://pubs.acs.org/doi/abs/10.1021/jp9057934

    [46] Hong X, Ishihara T, Nurmikko A V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors[J]. Physical Review B, 45, 6961-6964(1992). http://europepmc.org/abstract/MED/10000465

    [47] Yaffe O, Chernikov A, Norman Z M et al. Excitons in ultrathin organic-inorganic perovskite crystals[J]. Physical Review B, 92, 045414(2015). http://adsabs.harvard.edu/abs/2015PhRvB..92d5414Y

    [48] Quan L N, Yuan M J, Comin R et al. Ligand-stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society, 138, 2649-2655(2016). http://www.ncbi.nlm.nih.gov/pubmed/26841130

    [49] Liu J X, Leng J, Wu K F et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films[J]. Journal of the American Chemical Society, 139, 1432-1435(2017). http://www.ncbi.nlm.nih.gov/pubmed/28094931

    [50] Byun J, Cho H, Wolf C et al. Efficient visible quasi-2D perovskite light-emitting diodes[J]. Advanced Materials, 28, 7515-7520(2016).

    [51] Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites[J]. Chemphyschem, 15, 3733-3741(2014).

    [52] Estes W E, Losee D B, Hatfield W E. The magnetic properties of several quasi two-dimensional Heisenberg layer compounds: a new class of ferromagnetic insulators involving halocuprates[J]. The Journal of Chemical Physics, 72, 630-638(1980).

    [53] Zhang S J, Audebert P, Wei Y et al. Synthesis and optical properties of novel organic-inorganic hybrid UV (R-NH3)2PbCl4 semiconductors[J]. Journal of Materials Chemistry, 21, 466-474(2011).

    [54] Cortecchia D, Neutzner S, Srimath K et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation[J]. Journal of the American Chemical Society, 139, 39-42(2017).

    [55] Li L N, Sun Z H, Wang P et al. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector[J]. Angewandte Chemie International Edition, 56, 12150-12154(2017).

    [56] Sun Z H, Liu X T, Khan T et al. A photoferroelectric perovskite-type organometallic halide with exceptional anisotropy of bulk photovoltaic effects[J]. Angewandte Chemie International Edition, 55, 6545-6550(2016).

    [57] Saliba M, Matsui T, Seo J Y et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 9, 1989-1997(2016).

    [58] Li X, Ibrahim Dar M, Yi C Y et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 7, 703-711(2015).

    [59] Yang S, Wang Y, Liu P R et al. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nature Energy, 1, 15016(2016).

    [60] Zhang F, Ye S, Hao Y Y et al. Improving of CH3NH3PbI3 perovskite morphology and crystallinity using different annealing-atmosphere[J]. Journal of Synthetic Crystals, 45, 2215-2221(2016).

    [61] Wang Q, Dong Q F, Li T et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells[J]. Advanced Materials, 28, 6734-6739(2016).

    [62] Wen X R, Wu J M, Ye M D et al. Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells[J]. Chemical Communications, 52, 11355-11358(2016).

    [63] Smith I C, Hoke E T, Solis-Ibarra D et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 53, 11232-11235(2014).

    [64] Jeon N J, Noh J H, Kim Y C et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 13, 897-903(2014).

    [65] Zhang F, Song J, Zhang L X et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment[J]. Journal of Materials Chemistry A, 4, 8554-8561(2016).

    [66] Yao K, Wang X F, Xu Y X et al. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell[J]. Chemistry of Materials, 28, 3131-3138(2016).

    [67] Tsai H, Nie W Y, Blancon J C et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 536, 312-316(2016).

    [68] Mitzi D B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials[J]. Journal of Materials Chemistry, 21, 466-474(2011).

    [69] Zhang X, Munir R, Xu Z et al. Phase transition control for high performance Ruddlesden-Popper perovskite solar cells[J]. Advanced Materials, 30, 1707166(2018).

    [70] Zhang X, Ren X D, Liu B et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science, 10, 2095-2102(2017).

    [71] Wang Z P, Lin Q Q, Chmiel F P et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites[J]. Nature Energy, 2, 17135(2017).

    [72] Yao K, Wang X F, Xu Y X et al. A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite[J]. Nano Energy, 18, 165-175(2015).

    [73] Ma C Y, Leng C Q, Ji Y X et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells[J]. Nanoscale, 8, 18309-18314(2016).

    [74] Bai Y, Xiao S, Hu C et al. Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh VOC enhanced stability in the p-i-n photovoltaics[J]. Advanced Energy Materials, 7, 1701038(2017).

    [75] Zhang T Y, Dar M I, Li G et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI 3 perovskite phase for high-efficiency solar cells[J]. Science Advances, 3, e1700841(2017).

    [76] Liao J F, Rao H S, Chen B X et al. Dimension engineering on Cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 5, 2066-2072(2017).

    [77] Lin Y, Bai Y, Fang Y J et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures[J]. The Journal of Physical Chemistry Letters, 9, 654-658(2018).

    [78] Sendner M, Nayak P K, Egger D A et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport[J]. Materials Horizons, 3, 613-620(2016).

    [79] Veldhuis S A, Boix P P, Yantara N et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 28, 6804-6834(2016).

    [80] Hu H W, Salim T, Chen B B et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes[J]. Scientific Reports, 6, 33546(2016).

    [81] Shirasaki Y, Supran G J, Tisdale W A et al. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes[J]. Physical Review Letters, 110, 217403(2013).

    [82] Chen W B, Ma H, Ye J X et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 54, 110003(2017).

    [83] Bae W K, Park Y S, Lim J et al. Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature Communications, 4, 2661(2013).

    [84] Kim M H, Schubert M F, Dai Q et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Applied Physics Letters, 91, 183507(2007).

    [85] Mashford B S, Stevenson M, Popovic Z et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nature Photonics, 7, 407-412(2013).

    [86] Caruge J M, Halpert J E, Wood V et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2, 247-250(2008).

    [87] Hoke E T, Slotcavage D J, Dohner E R et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 6, 613-617(2015).

    [88] Era M, Morimoto S, Tsutsui T et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4[J]. Applied Physics Letters, 65, 676-678(1994).

    [89] Chondroudis K, Mitzi D B. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers[J]. Chemistry of Materials, 11, 3028-3030(1999).

    [90] Dohner E R, Hoke E T, Karunadasa H I. Self-assembly of broadband white-light emitters[J]. Journal of the American Chemical Society, 136, 1718-1721(2014).

    [91] Dohner E R, Jaffe A, Bradshaw L R et al. Intrinsic white-light emission from layered hybrid perovskites[J]. Journal of the American Chemical Society, 136, 13154-13157(2014).

    [92] Liang D, Peng Y L, Fu Y P et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates[J]. ACS Nano, 10, 6897-6904(2016).

    [93] Xiao Z G, Kerner R A, Zhao L F et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 11, 108-115(2017).

    [94] Zhang S T, Yi C, Wang N N et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells[J]. Advanced Materials, 29, 1606600(2017).

    [95] Tian Y, Zhou C K, Worku M et al. Light-emitting diodes: highly efficient spectrally stable red perovskite light-emitting diodes[J]. Advanced Materials, 30, 1870142(2018).

    [96] Jia G, Shi Z J, Xia Y D et al. Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes[J]. Optics Express, 26, A66-A74(2018).

    [97] Yang X L, Zhang X W, Deng J X et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J]. Nature Communications, 9, 570(2018).

    [98] Tsai H, Nie W Y, Blancon J C et al. Stable light-emitting diodes using phase-pure ruddlesden-popper layered perovskites[J]. Advanced Materials, 30, 1704217(2018).

    [99] Gao X Y, Zhang Y, Cui Y X et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 55, 070001(2018).

    [100] Wang J J, Zhao Z P, Liu J G. Research progress and development trend of balanced photodetectors[J]. Laser & Optoelectronics Progress, 55, 100001(2018).

    [101] Ahmad S, Kanaujia P K, Beeson H J et al. Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets[J]. ACS Applied Materials & Interfaces, 7, 25227-25236(2015).

    [102] Zhou J, Chu Y, Huang J. Photodetectors based on two-dimensional layer-structured hybrid lead Iodide perovskite semiconductors[J]. ACS Applied Materials & Interfaces, 8, 25660-25666(2016).

    [103] Tan Z J, Wu Y, Hong H et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector[J]. Journal of the American Chemical Society, 138, 16612-16615(2016).

    Na Han, Ting Ji, Yanxia Cui, Guohui Li, Hengkang Zhang, Yuying Hao. Research Progress of Two-Dimensional Layered Perovskite Materials and Their Applications[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070002
    Download Citation