• Journal of Semiconductors
  • Vol. 40, Issue 9, 091102 (2019)
Yong Zhang
Author Affiliations
  • Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
  • show less
    DOI: 10.1088/1674-4926/40/9/091102 Cite this Article
    Yong Zhang. Applications of Huang–Rhys theory in semiconductor optical spectroscopy[J]. Journal of Semiconductors, 2019, 40(9): 091102 Copy Citation Text show less
    References

    [1] K Huang, A Rhys, N F Mott. Theory of light absorption and non-radiative transitions in F-centres. Proc Royal Soc London A, 204, 406(1950).

    [2] S Permogorov. Excitons. North-Holland Publishing Company, 177(1982).

    [3] M Cardona. Light Scattering in Solids II. Springer Berlin Heidelberg, 19(1982).

    [4] S Z Karazhanov, Z Yong, L W Wang et al. Resonant defect states and strong lattice relaxation of oxygen vacancies in WO3. Phys Rev B, 68, 233204(2003).

    [5] A C Albrecht. On the theory of Raman intensities. J Chem Phys, 34, 1476(1961).

    [6] Y Zhang, W K Ge, M D Sturge et al. Phonon side-band of excitons bound to isoelectronic impurities in semiconductors. Phys Rev B, 47(1969).

    [7] Y Zhang, W K Ge. Behavior of nitrogen impurities in III–V semiconductors. J Lumin, 85, 247(2000).

    [8]

    [9] F Bassani, G P Parravicini. Electronic states and optical transitions in solids. Oxford: Pergamon, 190(1975).

    [10]

    [11]

    [12]

    [13] K Huang. Lattice relaxation and theory of multiphonon transitions. Prog Phys, 1, 31(1981).

    [14] M Balkanski. Effects of electron–phonon interaction in luminescence and light scattering. J Lumin, 24/25, 381(1981).

    [15] P G Snyder, C W Myles, H H Dai et al. Model for phonon-assisted indirect recombination at impurity sites in semiconductors: A test of impurity wave-function theories. Phys Rev B, 32, 2685(1985).

    [16]

    [17] Y L Wang, Z Q Gu, K Huang. A disorder induced lattice relaxation mechanism in alloys. Chin Sci Bull, 26, 531(1981).

    [18] S Schmitt-Rink, D A B Miller, D S Chemla. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys Rev B, 35, 8113(1987).

    [19] S Nomura, T Kobayashi. Exciton--LO-phonon couplings in spherical semiconductor microcrystallites. Phys Rev B, 45, 1305(1992).

    [20] R Merlin, G Güntherodt, R Humphreys et al. Multiphonon processes in YbS. Phys Rev B, 17, 4951(1987).

    [21] R Heitz, I Mukhametzhanov, O Stier et al. Enhanced polar exciton-LO-phonon interaction in quantum dots. Phys Rev Lett, 83, 4654(1999).

    [22] A P Alivisatos, T D Harris, P J Carroll et al. Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy. J Chem Phys, 90, 3463(1989).

    [23] Q Zhang, J Zhang, M I B Utama et al. Exciton–phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys Rev B, 85, 085418(2012).

    [24] M C Klein, F Hache, D Ricard et al. Size dependence of electron–phonon coupling in semiconductor nanospheres: The case of CdSe. Phys Rev B, 42, 11123(1990).

    [25] R A Faulkner. Toward a theory of isoelectronic impurities in semiconductors. Phys Rev, 175, 991(1968).

    [26] Y Zhang. Acceptor-like bound excitons in semiconductors. Phys Rev B, 45, 9025(1992).

    [27] Y Zhang, A Mascarenhas, L W Wang. Systematic approach to distinguishing a perturbed host state from an impurity state in a supercell calculation for a doped semiconductor: Using GaP:N as an example. Phys Rev B, 74, 041201(2006).

    [28] L Shi, L W Wang. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys Rev Lett, 109, 245501(2012).

    [29] P M Champion, A C Albrecht. Investigations of Soret excited resonance Raman excitation profiles in cytochrome c. J Chem Phys, 71, 1110(1979).

    [30] G Scamarcio, V Spagnolo, G Ventruti et al. Size dependence of electron–LO-phonon coupling in semiconductor nanocrystals. Phys Rev B, 53, R10489(1996).

    [31] A M Kelley. Resonance Raman overtone intensities and electron–phonon coupling strengths in semiconductor nanocrystals. J Phys Chem A, 117, 6143(2013).

    [32] R Rodríguez-Suárez, E Menéndez-Proupin, C Trallero-Giner et al. Multiphonon resonant Raman scattering in nanocrystals. Phys Rev B, 62, 11006(2000).

    [33]

    [34] M P Dos Santos, C Hirlimann, M Balkanski. Local induced activity in resonant Raman scattering of GaP:N. Phys B + C, 117/118, 108(1983).

    [35] A Frommer, n E Cohen, n A Ron. Resonant Raman-scattering induced by excitons bound to nitrogen impurities in GaP:N. Phys Rev B, 47, 1823(1993).

    [36] P H Tan, u Z Y Xu, o X D Luo et al. Resonant Raman scattering with the E+ band in a dilute GaAs1–xNx alloy (x = 0.1%). Appl Phys Lett, 89, 101912(2006).

    Yong Zhang. Applications of Huang–Rhys theory in semiconductor optical spectroscopy[J]. Journal of Semiconductors, 2019, 40(9): 091102
    Download Citation