• Photonics Research
  • Vol. 11, Issue 8, 1465 (2023)
DaeHwan Ahn1、†, Sunghan Jeon1、2、†, Hoyoung Suh1, Seungwan Woo1, Rafael Jumar Chu1, Daehwan Jung1, Won Jun Choi1, Donghee Park1, Jin-Dong Song1, Woo-Young Choi2, and Jae-Hoon Han1、*
Author Affiliations
  • 1Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
  • 2Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
  • show less
    DOI: 10.1364/PRJ.491498 Cite this Article Set citation alerts
    DaeHwan Ahn, Sunghan Jeon, Hoyoung Suh, Seungwan Woo, Rafael Jumar Chu, Daehwan Jung, Won Jun Choi, Donghee Park, Jin-Dong Song, Woo-Young Choi, Jae-Hoon Han. High-responsivity InAs quantum well photo-FET integrated on Si substrates for extended-range short-wave infrared photodetector applications[J]. Photonics Research, 2023, 11(8): 1465 Copy Citation Text show less
    References

    [1] J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, M. Takenaka. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).

    [2] Y. Li, J. Ibanez-Guzman. Lidar for autonomous driving the principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Process. Mag., 37, 50-61(2020).

    [3] T. J. Huppert, S. G. Diamond, M. A. Franceschini, D. A. Boas. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt., 48, D280-D298(2009).

    [4] Y. Arslan, F. Oguz, C. Besikci. Extended wavelength SWIR InGaAs focal plane array: characteristics and limitations. Infrared Phys. Technol., 70, 134-137(2015).

    [5] L. Luo, S. Assali, M. R. M. Atalla, S. Koelling, A. Attiaoui, G. Daligou, S. Martí, J. Arbiol, O. Moutanabbir. Extended-SWIR photodetection in all-group IV core/shell nanowires. ACS Photon., 9, 914-921(2022).

    [6] N. Li, Z. Lan, Y. S. Lau, J. Xie, D. Zhao, F. Zhu. SWIR photodetection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction. Adv. Sci., 7, 2000444(2020).

    [7] J. Miao, F. Zhang. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C, 7, 1741-1791(2019).

    [8] S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater., 4, 138-142(2005).

    [9] A. M. Itsuno, J. D. Phillips, S. Velicu. Mid-wave infrared HgCdTe nBn photodetector. Appl. Phys. Lett., 100, 161102(2012).

    [10] Y. Pinki, S. Dewan, R. Mishra, S. Das. Review of recent progress, challenges, and prospects of 2D materials-based short wavelength infrared photodetectors. J. Phys. D, 55, 313001(2022).

    [11] S. Manda, R. Matsumoto, S. Saito, S. Maruyama, H. Minari, T. Hirano, T. Takachi, N. Fujii, Y. Yamamoto, Y. Zaizen, T. Hirano, H. Iwamoto. High-definition visible-SWIR InGaAs image sensor using Cu-Cu bonding of III-V to silicon wafer. IEEE International Electron Device Meeting, 390-393(2020).

    [12] D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, G. Isella. Germanium-based integrated photonics from near- to mid-infrared application. Nanophotonics, 7, 1781-1793(2018).

    [13] M. Yokoyama, R. Iida, Y. Ikku, S. Kim, H. Takagi, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, S. Takagi. Formation of III–V-on-insulator structures on Si by direct wafer bonding. Semicond. Sci. Technol., 28, 094009(2013).

    [14] H. Kum, D. Lee, W. Kong, H. Kim, Y. Park, Y. Kim, Y. Baek, S.-H. Bae, K. Lee, J. Kim. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron., 2, 439-450(2019).

    [15] T. Ochiai, T. Akazawa, Y. Miyatake, K. Sumita, S. Ohno, S. Monfray, F. Boeuf, K. Toprasertpong, S. Takagi, M. Takenaka. Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths. Nat. Commun., 13, 7443(2022).

    [16] S. Kang, D. Ahn, I. Lee, W. J. Choi, J. Song, J.-H. Han. Cavity-enhanced InGaAs photo-FET with a metal gate reflector fabricated by wafer bonding on Si. Opt. Express, 29, 42630-42641(2021).

    [17] K. Oishi, H. Ishii, W. H. Chang, H. Ishii, A. Endoh, H. Fujishiro, T. Maeda. Spectral responsivity characteristics of front-side illumination InGaAs PhotoFETs on Si. Phys. Stat. Solidi A, 218, 2000439(2020).

    [18] T. Akazawa, D. Wu, K. Sumita, N. Sekine, M. Okano, K. Toprasertpong, S. Takagi, M. Takenaka. Low-capacitance ultrathin InGaAs membrane photodetector on Si slot waveguide toward receiverless system. IEEE Trans. Electron Devices, 69, 7184-7189(2022).

    [19] J. A. del Alamo. Nanometre-scale electronics with III-V compound semiconductors. Nature, 479, 317-323(2011).

    [20] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys., 89, 5815-5875(2001).

    [21] M. Passlack. OFF-state current limits of narrow bandgap MOSFETs. IEEE Trans. Electron Devices, 53, 2773-2778(2006).

    [22] I. Ferain, C. A. Colinge, J. P. Colinge. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature, 479, 310-316(2011).

    [23] E. M. Vogel. Technology and metrology of new electronic materials and devices. Nat. Nanotechnol., 2, 25-32(2007).

    [24] M. J. Kumar, A. Chaudhry. Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron Devices, 51, 569-574(2004).

    [25] N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, G. Dong, T. F. Hung, J. C. Ho. Tunable electronic transport properties of metal-cluster-decorated III-V nanowire transistors. Adv. Mater., 25, 4445-4451(2013).

    [26] J. Miao, W. Hu, N. Guo, Z. Lu, X. Zou, L. Liao, S. Shi, P. Chen, Z. Fan, J. C. Ho, T.-X. Li, X. S. Chen, W. Lu. Single InAs nanowire room temperature near-infrared photodetector. ACS Nano, 8, 3628-3635(2014).

    [27] N. Guo, W. Hu, L. Liao, S. Yip, J. C. Ho, J. Miao, Z. Zhang, J. Zou, T. Jiang, S. Wu, X. Chen, W. Lu. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater., 26, 8203-8209(2014).

    [28] X. Zhang, X. Yao, Z. Li, C. Zhou, X. Yuan, Z. Tang, W. Hu, X. Gan, J. Zou, P. Chen, W. Lu. Surface-states-modulated high-performance InAs nanowire phototransistor. J. Phys. Chem. Lett., 11, 6413-6419(2020).

    [29] S. Kim, M. Yokoyama, R. Nakane, O. Ichikawa, T. Osada, M. Hata, M. Takenaka, S. Takagi. Experimental study on vertical scaling of InAs-on-insulator metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett., 104, 4885765(2014).

    [30] D.-H. Kim, T.-W. Kim, R. J. W. Hill, C. D. Young, C. Y. Kang, C. Hobbs, P. Kirsch, J. A. del Alamo, R. Jammy. High-speed E-mode InAs QW MOSFETs with Al2O3 insulator for future RF applications. IEEE Electron Device Lett., 34, 196-198(2013).

    [31] W. Shen, G. Zhou, J. Du, L. Zhou, K. Xu, Z. He. High-speed silicon microring modulator at the 2 μm waveband with analysis and observation of optical bistability. Photon. Res., 10, A35-A42(2022).

    [32] J.-H. Han, M. Takenaka, S. Takagi. Study on void reduction in direct wafer bonding using Al2O3/HfO2 bonding interface for high-performance Si high-k MOS optical modulators. Jpn. J. Appl. Phys., 55, 04EC06(2016).

    [33] T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, Y. Kondo. Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates. IEEE J. Sel. Top. Quantum Electron., 14, 992-997(2008).

    [34] D. H. Ahn, S. M. Ji, M. Takenaka, S. Takagi. Design and properties of planar-type tunnel FETs using In0.53Ga0.47As/InxGa1−xAs/In0.53Ga0.47As quantum well. J. Appl. Phys., 122, 4992005(2017).

    [35] C. G. Van de Walle. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B, 39, 1871-1883(1989).

    [36] K. Nishi, K. Hirose, T. Mizutani. Optical characterization of InGaAs-InAlAs strained-layer superlattices grown by molecular beam epitaxy. Appl. Phys. Lett., 49, 794-796(1986).

    [37] R. People, J. C. Bean. Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl. Phys. Lett., 47, 322-324(1985).

    [38] M. Tacano, Y. Sugiyama, Y. Takeuchi. Critical-layer thickness of a pseudomorphic In0.8Ga0.2As heterostructure grown on InP. Appl. Phys. Lett., 58, 2420-2422(1991).

    [39] Y. Takanashi, K. Takahata, Y. Muramoto. Characteristics of InAlAs/InGaAs high-electron-mobility transistors under illumination with modulated light. IEEE Trans. Electron Devices, 46, 2271-2277(1999).

    [40] H.-S. Kang, C.-S. Choi, W.-Y. Choi, D.-H. Kim, K.-S. Seo. Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors. Appl. Phys. Lett., 84, 3780-3782(2004).

    [41] T. Maeda, K. Oishi, H. Ishii, W. H. Chang, T. Shimizu, A. Endoh, H. Fujishiro, T. Koida. High and broadband sensitivity frontside illuminated InGaAs photo field effect transistors (photoFETs) with SWIR transparent conductive oxide (TCO) gate. Appl. Phys. Lett., 119, 192101(2021).

    [42] C. Navarro, S. Karg, C. Marquez, S. Navarro, C. Convertino, C. Zota, L. Czornomaz, F. Gamiz. Capacitor-less dynamic random access memory based on a III–V transistor with a gate length of 14 nm. Nat. Electron., 2, 412-419(2019).

    [43] Y. Li, A. Alian, M. Sivan, L. Huang, K. W. Ang, D. Lin, D. Mocuta, N. Collaert, A. V. Y. Thean. A flexible InGaAs nanomembrane photoFET with tunable responsivities in near- and short-wave IR region for lightweight imaging applications. APL Mater., 7, 031503(2019).

    [44] H. Fang, W. Hu, P. Wang, N. Guo, W. Luo, D. Zheng, F. Gong, M. Luo, H. Tian, X. Zhang, C. Luo, X. Wu, P. Chen, L. Liao, A. Pan, X. Chen, W. Lu. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire. Nano Lett., 16, 6416-6424(2016).

    [45] http://www.thorlabs.com. http://www.thorlabs.com

    DaeHwan Ahn, Sunghan Jeon, Hoyoung Suh, Seungwan Woo, Rafael Jumar Chu, Daehwan Jung, Won Jun Choi, Donghee Park, Jin-Dong Song, Woo-Young Choi, Jae-Hoon Han. High-responsivity InAs quantum well photo-FET integrated on Si substrates for extended-range short-wave infrared photodetector applications[J]. Photonics Research, 2023, 11(8): 1465
    Download Citation