• Acta Optica Sinica
  • Vol. 41, Issue 6, 0601003 (2021)
Xiaomei Jin1、2, Wenyue Zhu1、2, Qing Liu1、2、3、*, and Yehui Chen1、2、3、4
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2Advanced Laser Technology Laboratory of Anhui Province, Hefei, Anhui 230037, China
  • 3Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 4Electronic Communications Engineering College, Anhui Xinhua University, Hefei, Anhui 230088, China
  • show less
    DOI: 10.3788/AOS202141.0601003 Cite this Article Set citation alerts
    Xiaomei Jin, Wenyue Zhu, Qing Liu, Yehui Chen. Numerical Modeling and Simulation Analysis of Coherent Wind Lidar[J]. Acta Optica Sinica, 2021, 41(6): 0601003 Copy Citation Text show less
    References

    [1] An Y Y, Zeng X D[M]. Photoelectric detection principle, 8(2004).

    [2] Huffaker R M. Laser Doppler detection systems for gas velocity measurement[J]. Applied Optics, 9, 1026-1039(1970). http://www.ncbi.nlm.nih.gov/pubmed/20076326

    [3] Henderson S W, Ota K. Recent improvements in eyesafe, solid-state and coherent laser radar technology[J]. The Review of Laser Engineering, 25, 19-24(1997).

    [4] Kavaya M J, Henderson S W, Magee J R et al. Remote wind profiling with a solid-state Nd∶YAG coherent lidar system[J]. Optics Letters, 14, 776-778(1989). http://www.ncbi.nlm.nih.gov/pubmed/19752964

    [5] Fujii T, Fukuchi T[M]. Laser remote sensing(2005).

    [6] Lombard L, Dolfi-Bouteyre A, Besson C et al. Long range wind lidars based on novel high spectral brilliance all-fibered sources[J]. Proceedings of SPIE, 9645, 96450B(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2466379

    [7] Jia X D. Development of 1.55 μm coherent lidar for wind sensing[D]. Hefei: University of Science and Technology of China(2015).

    [8] Ma F M, Chen Y, Yang Z H et al. Latest development of laser Doppler wind measurement technology[J]. Laser & Optoelectronics Progress, 56, 180003(2019).

    [9] Zhou Y Z, Wang C, Liu Y P et al. Research progress and application of coherent wind lidar[J]. Laser & Optoelectronics Progress, 56, 020001(2019).

    [10] Yuan L C, Liu H, Liu J Q et al. Wind vector estimation of coherent Doppler wind lidar based on genetic algorithm[J]. Chinese Journal of Lasers, 47, 0810004(2020).

    [11] Wang P C, Chen T D, Zhou A R et al. Wind velocity estimation algorithm based on Gaussian fitting in coherent lidar[J]. Infrared and Laser Engineering, 47, 123006(2018).

    [12] Wang K X, Gao C Q, Lin Z F et al. 1645 nm coherent Doppler wind lidar with a single-frequency Er∶YAG laser[J]. Optical Express, 28, 14694-14704(2020). http://www.researchgate.net/publication/340848459_1645_nm_Coherent_Doppler_wind_lidar_with_a_single-frequency_ErYAG_laser

    [13] Kameyama S, Ando T, Asaka K et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 46, 1953-1962(2007).

    [14] Pan J Y, Wu S Y, Liu G et al. Wind measurement techniques of coherent wind lidar[J]. Infrared and Laser Engineering, 42, 1720-1724(2013).

    [15] Bu Z C. Study on the system design and data processing algorithm for coherent Doppler wind lidar[D]. Beijing: Beijing Institute of Technology(2014).

    [16] Bai X, Guo P, Chen S Y et al. Simulation in the time domain and time-frequency analysis for coherent Doppler wind lidar[J]. Chinese Journal of Lasers, 42, 0114003(2015).

    [17] Li Y C. Research for 1.55 μm acousto-optic frequency shifter characteristic[D]. Harbin: Harbin Institute of Technology(2007).

    [18] Salamitou P, Dabas A, Flamant P H. Simulation in the time domain for heterodyne coherent laser radar[J]. Applied Optics, 34, 499-506(1995). http://www.ncbi.nlm.nih.gov/pubmed/20963144

    [19] Siegman A E. The antenna properties of optical heterodyne receivers[J]. Proceedings of the IEEE, 54, 1350-1356(1966).

    [20] Bu Z C, Zhang Y C, Chen S Y et al. Noise modeling by the trend of each range gate for coherent Doppler LIDAR[J]. Optical Engineering, 53, 063109(2014).

    [21] Rye B J, Hardesty R M. Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. spectral accumulation and the Cramer-Rao lower bound[J]. IEEE Transactions on Geoscience & Remote Sensing, 31, 16-27(1993). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=210440

    [22] Rye B J, Hardesty R M. Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. correlogram accumulation[J]. IEEE Transactions on Geoscience & Remote Sensing, 31, 28-35(1993). http://ieeexplore.ieee.org/iel1/36/5461/00210440.pdf

    [23] Wang C, Xia H Y, Liu Y P et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis[J]. Optics Communications, 424, 48-53(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=d98a2d49c381c4aaa604f7e7e5afadae

    [24] Cariou J P, Sauvage L, Thobois L et al. Long range scanning pulsed coherent lidar for real time wind monitoring in the planetary boundary layer[C]∥Proceedings of 16th Coherent Laser Radar Conference, June 20-24, 2011, Long Beach, California, USA.(2011).

    [25] Jia X D, Sun D S, Shu Z F et al. Optimal design of the telescope in coherent lidar and detection performance analysis[J]. Acta Optica Sinica, 35, 0301001(2015).

    Xiaomei Jin, Wenyue Zhu, Qing Liu, Yehui Chen. Numerical Modeling and Simulation Analysis of Coherent Wind Lidar[J]. Acta Optica Sinica, 2021, 41(6): 0601003
    Download Citation