• Photonics Research
  • Vol. 11, Issue 10, A54 (2023)
Julius Kullig1、*, Daniel Grom1、3, Sebastian Klembt2, and Jan Wiersig1
Author Affiliations
  • 1Institut für Physik, Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg, Germany
  • 2Technische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, Physikalisches Institut and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, University of Würzburg, 97070 Würzburg, Germany
  • 3e-mail: daniel.grom@ovgu.de
  • show less
    DOI: 10.1364/PRJ.496414 Cite this Article Set citation alerts
    Julius Kullig, Daniel Grom, Sebastian Klembt, Jan Wiersig. Higher-order exceptional points in waveguide-coupled microcavities: perturbation induced frequency splitting and mode patterns[J]. Photonics Research, 2023, 11(10): A54 Copy Citation Text show less
    References

    [1] T. Kato. Perturbation Theory for Linear Operators(1966).

    [2] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).

    [3] W. D. Heiss. The physics of exceptional points. J. Phys. A Math. Theor., 45, 444016(2012).

    [4] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [5] M.-A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [6] E. J. Bergholtz, J. C. Budich, F. K. Kunst. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 93, 015005(2021).

    [7] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [8] J. Wiersig. Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A, 89, 012119(2014).

    [9] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 93, 033809(2016).

    [10] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [11] H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [12] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, K. Vahala. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576, 65-69(2019).

    [13] C. Zeng, Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, H. Chen. Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system. Opt. Express, 27, 27562-27572(2019).

    [14] J. Wiersig. Review of exceptional point-based sensors. Photonics Res., 8, 1457-1467(2020).

    [15] R. Kononchuk, J. Cai, F. Ellis, R. Thevamaran, T. Kottos. Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature, 607, 697-702(2022).

    [16] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monfi, C. M. Bender, F. Nori, L. Yang. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    [17] P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, L. Feng. Orbital angular momentum microlaser. Science, 353, 464-467(2016).

    [18] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time–symmetric microring lasers. Science, 346, 975-978(2014).

    [19] A. Stegmaier, S. Imhof, T. Helbig, T. Hofmann, C. H. Lee, M. Kremer, A. Fritzsche, T. Feichtner, S. Klembt, S. Höfling, I. Boettcher, I. C. Fulga, L. Ma, O. G. Schmidt, M. Greiter, T. Kiessling, A. Szameit, R. Thomale. Topological defect engineering and PT symmetry in non-Hermitian electrical circuits. Phys. Rev. Lett., 126, 215302(2021).

    [20] Y. Wang, Y. Ren, X. Luo, B. Li, Z. Chen, Z. Liu, F. Liu, Y. Cai, Y. Zhang, J. Liu, F. Li. Manipulating cavity photon dynamics by topologically curved space. Light Sci. Appl., 11, 308(2022).

    [21] Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, Y.-F. Xiao. Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems. Sci. Bull., 63, 1096-1100(2018).

    [22] C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [23] F. Zhang, Y. Feng, X. Chen, L. Ge, W. Wan. Synthetic anti-PT symmetry in a single microcavity. Phys. Rev. Lett., 124, 053901(2020).

    [24] Q. Zhong, Ş. K. Özdemir, A. Eisfeld, A. Metelmann, R. El-Ganainy. Exceptional-point-based optical amplifiers. Phys. Rev. Appl., 13, 014070(2020).

    [25] J. Wiersig. Response strengths of open systems at exceptional points. Phys. Rev. Res., 4, 023121(2022).

    [26] J. Kullig, J. Wiersig. High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities. Phys. Rev. A, 100, 043837(2019).

    [27] H. Jing, Ş. K. Özdemir, H. Lü, F. Nori. High-order exceptional points in optomechanics. Sci. Rep., 7, 3386(2017).

    [28] W. Xiong, Z. Li, Y. Song, J. Chen, G.-Q. Zhang, M. Wang. Higher-order exceptional point in a pseudo-Hermitian cavity optomechanical system. Phys. Rev. A, 104, 063508(2021).

    [29] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun., 10, 832(2019).

    [30] Q. Zhong, J. Kou, Ş. K. Özdemir, R. El-Ganainy. Hierarchical construction of higher-order exceptional points. Phys. Rev. Lett., 125, 203602(2020).

    [31] J. Wiersig. Revisiting the hierarchical construction of higher-order exceptional points. Phys. Rev. A, 106, 063526(2022).

    [32] X.-Y. Wang, F.-F. Wang, X.-Y. Hu. Waveguide-induced coalescence of exceptional points. Phys. Rev. A, 101, 053820(2020).

    [33] H. Yang, X. Mao, G.-Q. Qin, M. Wang, H. Zhang, D. Ruan, G.-L. Long. Scalable higher-order exceptional surface with passive resonators. Opt. Lett., 46, 4025-4028(2021).

    [34] K. Liao, Y. Zhong, Z. Du, G. Liu, C. Li, X. Wu, C. Deng, C. Lu, X. Wang, C. T. Chan, Q. Song, S. Wang, X. Liu, X. Hu, Q. Gong. On-chip integrated exceptional surface microlaser. Sci. Adv., 9, eadf3470(2023).

    [35] Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, R. El-Ganainy. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett., 122, 153902(2019).

    [36] Q. Zhong, S. Nelson, Ş. K. Özdemir, R. El-Ganainy. Controlling directional absorption with chiral exceptional surfaces. Opt. Lett., 44, 5242-5245(2019).

    [37] G.-Q. Qin, R.-R. Xie, H. Zhang, Y.-Q. Hu, M. Wang, G.-Q. Li, H. Xu, F. Lei, D. Ruan, G.-L. Long. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photonics Rev., 15, 2000569(2021).

    [38] J. Wiersig, D. Christodoulides, J. Yang. Non-Hermitian effects due to asymmetric backscattering of light in whispering-gallery microcavities. Parity-time Symmetry and Its Applications, 280, 155-184(2018).

    [39] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 84, 063828(2011).

    [40] https://www.comsol.com. https://www.comsol.com

    [41] A. Hashemi, K. Busch, D. N. Christodoulides, Ş. K. Özdemir, R. El-Ganainy. Linear response theory of open systems with exceptional points. Nat. Commun., 13, 3281(2022).

    [42] N. Hatano, D. R. Nelson. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett., 77, 570-573(1996).

    [43] W. D. Heiss, H. L. Harney. The chirality of exceptional points. Eur. Phys. J. D, 17, 149-151(2001).

    [44] W. D. Heiss. Chirality of wavefunctions for three coalescing levels. J. Phys. A Math. Theor., 41, 244010(2008).

    [45] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 27, 1669-1671(2002).

    [46] C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron., 35, 1322-1331(1999).

    [47] M. Khanbekyan, J. Wiersig. Decay suppression of spontaneous emission of a single emitter in a high-Q cavity at exceptional points. Phys. Rev. Res., 2, 023375(2020).

    [48] W. D. Heiss. Green’s functions at exceptional points. Int. J. Theor. Phys., 54, 3954-3959(2015).

    [49] H.-K. Lau, A. A. Clerk. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun., 9, 4320(2018).

    [50] W. Langbein. No exceptional precision of exceptional-point sensors. Phys. Rev. A, 98, 023805(2018).

    [51] H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, K. Vahala. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 11, 1610(2020).

    [52] C. Chen, L. Jin, R.-B. Liu. Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New J. Phys., 21, 083002(2019).

    [53] M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, L. Jiang. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett., 123, 180501(2019).

    [54] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [55] Z.-Q. Yang, Z.-K. Shao, H.-Z. Chen, X.-R. Mao, R.-M. Ma. Spin-momentum-locked edge mode for topological vortex lasing. Phys. Rev. Lett., 125, 013903(2020).

    [56] D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, C. Koos. Lasing in silicon–organic hybrid waveguides. Nat. Commun., 7, 10864(2016).

    Julius Kullig, Daniel Grom, Sebastian Klembt, Jan Wiersig. Higher-order exceptional points in waveguide-coupled microcavities: perturbation induced frequency splitting and mode patterns[J]. Photonics Research, 2023, 11(10): A54
    Download Citation