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Exceptional points are degeneracies in the spectrum of non-Hermitian open systems where at least two eigen-
frequencies and simultaneously the corresponding eigenstates of the Hamiltonian coalesce. Especially, the robust
construction of higher-order exceptional points with more than two degenerate eigenfrequencies and eigenstates is
challenging but yet worthwhile for applications. In this paper, we reconsider the formation of higher-order excep-
tional points through waveguide-coupled microring cavities and asymmetric backscattering. In this context, we
demonstrate the influence of perturbations on the frequency splitting of the system. To generate higher-order
exceptional points in a simple and robust way, a mirror-induced asymmetric backscattering approach is used. In
addition to the exceptional-point enhanced sensing capabilities of such systems, also a cavity-selective sensitivity is
achieved for particle sensing. The results are motivated by an effective Hamiltonian description and verified by
full numerical simulations of the dielectric structure. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.496414

1. INTRODUCTION

In contrast to closed Hermitian systems, open non-Hermitian
systems can feature an interesting type of degeneracies where
not only the eigenvalues or frequencies but simultaneously also
the corresponding eigenstates or modes of the Hamiltonian co-
alesce [1–3]. This phenomenon typically occurs at specific
points in the parameter space, which are therefore called excep-
tional points (EPs). In the past years, the research on EPs has
been growing enormously especially but not exclusively in op-
tics and photonics [4–7]. A plethora of interesting phenomena
and applications arise around EPs, some of which are EP-based
sensing [8–15], loss-induced revival of lasing [16], orbital an-
gular momentum lasers [17], single-mode lasing [18], topologi-
cal defect engineering [19], topologically curved microcavities
[20], time-symmetry breaking in cavity quantum electrody-
namics systems [21], electromagnetically induced transparency
[22], synthetic dimensions with anti-PT symmetry [23], or op-
tical amplifiers [24].

A key challenge is the generation of higher-order EPs where
n > 2 eigenstates and eigenvectors coalesce. Such EPs of
order n (EPn) have a characteristic nth root topology of their
complex eigenvalues in parameter space, which makes them ex-
ceedingly suited for sensing applications as a small perturbation

generically results in a sizable response of the frequencies due to
the steep slope of the nth root at the EP [25].

On the other hand, the extreme sensitivity makes the reali-
zation of a system at an EPn challenging and often includes a
delicate fine tuning of parameters. For example, Hodaei et al.
[11] realized an enhanced frequency splitting at an EP3 with
three optical ring resonators with fine-tuned gain and loss.
In Ref. [26], the authors proposed an optical microcavity with
a precisely tuned boundary shape to generate an EP4. Other
systems with high-order EPs suggested are optomechanical sys-
tems [27,28], resonators with spin–orbit interaction [29], par-
ity–time symmetric cavities [11,30,31], waveguide (WG)-
coupled refractive index tuned cavities [32], WG-coupled
cavities with optical isolators [33], and recently coupled cavities
with tuned asymmetric auxiliary WG elements [34].

A solution for the robust fabrication of an EP2 has been
proposed in terms of exceptional surfaces [35–37], whereby
fabrication tolerances represent non-generic perturbations that
do not drive the system away from the EP whereas, e.g., a test
particle (TP) does drive the system away from the EP and,
therefore, leads to an EP-enhanced frequency splitting.
Zhong et al. [35] proposed an exceptional surface in an elegant
way by coupling a microring cavity to a WG with a mirror at
the end. Therefore, clockwise (CW) and counterclockwise
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(CCW) propagating waves in the microring are coupled via
asymmetric backscattering [38] such that an EP2 is generated.
The existence of the EP2 is independent from fabrication
parameters like the precise edge-to-edge distance between the
WG and microring but shows an EP-enhanced sensing of a TP.

Furthermore, Wang et al. [32] showed that already two
(three) microring cavities coupled by a single WG form two
EP2s (EP3s). They additionally increase the order of the EP
to four (six) via a sophisticated fine tuning of the refractive in-
dex profile of the individual microrings.

In this paper, we build on the approaches by Zhong et al.
[35] and Wang et al. [32] and develop them further. In contrast
to their works, we construct higher-order EPs with an easy-to-
realize and robust fabrication scheme where a fine tuning of
parameters is not necessary. Our proposed setup is supposed
to work at room temperature and is scalable in size. In particu-
lar, we investigate two setups of N WG-coupled microring
cavities that form an EP of order 2N by placing a mirror at
one end of a WG. One of these setups with N � 3 cavities
and the corresponding eigenmodes of an EP6 is illustrated in
the front of Fig. 1. The analog setup without a mirror is visu-
alized in the background. In contrast to the proposed scheme,
the mirrorless setup is at two EP3swith similar eigenmodes. We
show that systems consisting of WG-coupled microring cavities
with mirror-induced asymmetric backscattering enable an EP-
enhanced particle sensing with an interesting and potentially
useful cavity-selective scaling of the sensitivity.

Within coupled-mode theory, an effective Hamiltonian as a
2N × 2N matrix is constructed, which allows for an intuitive
understanding of the EP formation. In addition, the effective
Hamiltonian description has an excellent agreement with the
numerical finite-element method (FEM) simulations of the sys-
tem including the complex eigenfrequencies and the reflection
spectra of the system perturbed by a TP.

The paper is organized as follows. In Section 2, the system of
two WG-coupled cavities is revised. In Section 3, the two
schemes for the higher-order EP construction are discussed.
A summary is given in Section 4.

2. TWO WG-COUPLED MICRORING CAVITIES

First, some preliminary considerations using a matrix model are
in order. A single microring cavity is assumed, which is coupled
to a WG. This situation is very well described by an effective
two-mode Hamiltonian H 0 in the basis of CCW and CW
propagating waves as

H 0 �
�
Ω D
D Ω

�
, (1)

where Ω is the complex frequency of the CCW and CW waves.
The complex off-diagonal elementsD reflect the small symmet-
ric coupling between CW and CCW waves due to the weak
backreflections at the WG. Adding a small TP to the cavity
is typically described by a perturbation matrix. An approach
for the design of such a perturbation matrix for an isolated mi-
crodisk perturbed by two TPs is given in Ref. [39]. Here, we
interpret the WG already as one of the TPs leading to the ma-
trix in Eq. (1). Thus, adding a TP to the WG-perturbed cavity
adds a perturbation matrix of the following form:

HTP �
�

V � U �V − U �e−i2mϕTP

�V − U �ei2mϕTP V � U

�
, (2)

where m is the azimuthal mode number of the mode to be per-
turbed and ϕTP is the angle between the WG and the TP. The
complex parameters V andU include the perturbation strength
induced by the TP. Usually jU j is much smaller than jV j. For
small perturbations, i.e., small radii rTP of the TP, the param-
eter U is negligible. Therefore,

HTP�ϵ� ≈ ϵ

�
1 e−i2mϕTP

ei2mϕTP 1

�
, (3)

where the perturbation strength ϵ ≡ V scales with r2TP. This
statement is in agreement with Zhong et al. [30] and further
reviewed in Appendix A.

Hence, the eigenvalues Ωi of the perturbed system
H �ϵ� � H 0 �HTP�ϵ� have a splitting,
ΔΩ � jΩ1 − Ω2j � 2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 2Dϵ cos�2mϕTP� � ϵ2

p
j, (4)

which increases linearly in jϵj for jDj ≪ jϵj. Note that this is
the typical observation as D is often negligibly small.

The extension of the matrix model to a system with two
identical microring cavities coupled via a WG is straightfor-
ward; see Fig. 2(a) and Ref. [32]. In the basis of CCW/CW
waves of the left and CCW/CW waves of the right microring,
the effective Hamiltonian reads

H 0 �

0
BB@

Ω D A 0
D Ω 0 0
0 0 Ω D
0 A D Ω

1
CCA: (5)

Due to the spatial symmetry of the WG-microring system, the
complex coupling parameter A is the same for CCW waves
from the right to the left cavity and for CW waves from the
left to the right cavity. It is assumed that the symmetric internal
backscattering D at the WG is small compared to the direc-
tional coupling from one cavity to the other implying
jAj ≫ jDj holds. In particular, this condition is fulfilled close
to the critical coupling regime. For the idealized case D � 0,

Fig. 1. Illustration of different setups with the corresponding ei-
genmodes for the realization of higher-order EPs. In the front is an
example for an EP6 realized with the proposed scheme consisting
of three WG-coupled microrings and a gold mirror. The setup in
the background with three WG-coupled microrings is at two EP3s.
The arrows show the traveling direction of the confined light.
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the effective Hamiltonian [Eq. (5)] has two EP2s with eigen-
value Ω and associated eigenstates �1, 0, 0,�1�T. Thus, two
microring cavities coupled via a WG realize in a good approxi-
mation an EP; see Ref. [32].

If a perturbation of a higher-order EPN is considered, the N
frequencies Ωi diverge along the Riemann sheets of an N th-
order root. Therefore, the generalization of the splitting ΔΩ
from Eq. (4) to more than two frequencies is not straightfor-
ward. In this paper, we use the convenient definition,

ΔΩ � max
i, j

jΩi −Ωjj, (6)

which is the maximal distance in the complex plane between
two frequencies emerging from the EP for a given perturbation;
see Fig. 3 for an illustration. The definition is consistent with
Eq. (4) and captures the characteristic behavior of the frequen-
cies around an EPN .

For the purpose of TP-sensing, it needs to be distinguished
at which cavity a TP is placed. The perturbation matrix for a
TP at the left or at the right cavity can be constructed via
H �1�

TP�ϵ� � HTP�ϵ� ⊕ 02,2 or H �2�
TP�ϵ� � 02,2 ⊕ HTP�ϵ�, re-

spectively. Thus, the effective Hamiltonian of the system with
one TP at the left cavity reads

H �1��ϵ� � H 0 �H �1�
TP�ϵ�, (7)

with H 0 from Eq. (5). In contrast, placing two identical TPs at
each cavity leads to the effective Hamiltonian,

H �1�2��ϵ� � H 0 �H �1�
TP�ϵ� �H �2�

TP�ϵ�: (8)

These two scenarios lead to a different behavior of the splitting
ΔΩ as shown in Fig. 2. For this idealized case with D � 0 [see
Fig. 2(b)], the system shows the expected square-root scaling of
the splitting ΔΩ at an EP2 if it is perturbed by two identical
TPs, one at each cavity. A closer look at the analytic solution of
the eigenvalue problem with the Hamiltonian H �1�2� for the
exemplary parameters �D,m,ϕTP� � �0, 20, π∕2� reveals that

for
ffiffiffiffiffiffiffiffiffiffiffi
jϵ∕Aj

p
≪ 1 the eigenstates are ∼�1, 0, 0,�1�T with a

dominant square-root scaling of the corresponding eigenvalues.
If

ffiffiffiffiffiffiffiffiffiffiffi
jϵ∕Aj

p
≪ 1 is not fulfilled, the linear scaling of the eigen-

values is dominant. The transition from a square-root to a lin-
ear scaling of the splitting is only present for symmetric
perturbations of both cavities. Placing a single TP solely at
the left cavity represents a non-generic perturbation [25] within
which only a linear scaling of the frequency splitting can be
observed for D � 0 over the whole ϵ range. To understand this
behavior, the solution of the eigenvalue problem with H �1� for
parameters �D,m,ϕTP� � �0, 20, π∕2� in Eq. (7) is useful. It
shows that, through the perturbation, an EP3 with eigenvalue
Ω and eigenstate �0,0,0,1�T independent from ϵ is formed.
This means that the perturbation forms an EP3 and moves
the system along a corresponding exceptional surface [35,36]
only changing the remaining eigenvalue Ω� 2ϵ and eigenstate
�2ϵ∕A; 2ϵ∕A; 0; 1�T. Remarkably, if 2ϵ∕A is chosen small but
still finite to break the symmetry, the eigenstates approximately
coalesce to ∼�0,0,0,1�T, which indicates that the system is
close to an EP4 in parameter space.

For small but finite D ≠ 0, interesting differences can be
observed as shown in Fig. 2(c). One of the differences is the
quartic-root scaling of the splitting ΔΩ by placing a TP at
the left cavity. In order to get an understanding for the obser-
vation, the matrix related to the parameter D can be appre-
hended as another perturbation. The combination of the ϵ
and D perturbation leads the system being near an EP4 even
though the system itself without TP only supports two EP2s.
The finite ϵ and D in parallel excite the quartic-root scaling the
most for a parameter range around ϵ ≈ 10−9,…, 10−6. Note
that this quartic-root, however, does not lead to an increased
sensitivity as splitting for H �1� is smaller than the splitting
for H �1�2�; see Fig. 2(c).

As mentioned before, if 2ϵ∕A ≪ 1 is not fulfilled, the sys-
tem is not close enough to an EP4 in the parameter space; there-
fore, the linear scaling of the splitting becomes dominant. For
ϵ ≪ jDj, the TP-induced perturbation is negligible compared
to the small symmetric coupling D. Therefore, the observed
saturation in Fig. 2(c) for small perturbation strength ϵ occurs.
It is remarkable that the saturation value in ΔΩ is orders of
magnitudes larger than jDj itself, whereas in the single-cavity
case it is of the order of jDj. Here, the analytic solution of
the eigenvalue problem with H 0 in Eq. (5) can provide an
explanation: the eigenvalues are Ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � DA

p
and

Ω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − DA

p
. Thus, for small jDj ≪ jAj, the splitting

ΔΩ is of the order
ffiffiffiffiffiffiffi
jDj

p
, i.e., the square root leads to the

differences in magnitudes for the saturation values. For the case
with two identical TPs on each cavity, the difference between
Figs. 3(b) and 3(c) is the saturation effect for negligibly
small TPs.

As will be discussed in the next section, already an infini-
tesimal small, asymmetric coupling between CCW and CW
waves in the form of a single TP at one cavity could lead to
the formation of a higher-order EP. However, the scaling of
the frequency splitting ΔΩ of the system is strongly related
to the perturbation. In the example above, it is illustrated
how the interaction of two perturbations, namely ϵ and D,
can lead to an interesting scaling behavior of ΔΩ.

Fig. 2. (a) Illustration of two WG-coupled microrings. The WG is
infinitely long without backscattering as indicated by the outward
pointing arrows. (b), (c) Frequency splitting ΔΩ for the matrix model
of two WG-coupled microrings that are perturbed by TPs according
to Eqs. (7) and (8). The parameters are Ω � 8.31 − 3.5 × 10−4i,
A � 3.5 × 10−4, m � 20, ϕTP � π∕2, and ϵ ∈ R�. In (b) D � 0;
in (c) D� 10−9. Gray solid, dashed, and dotted lines serve as guides
to the eye for the respective scaling.

A56 Vol. 11, No. 10 / October 2023 / Photonics Research Research Article



Next, a numerical simulation to verify the matrix model of
the WG-coupled cavities is in order. Therefore, the FEM solver
COMSOL Multiphysics [40] is used to find solutions of the
mode equation,

�Δ� n2k2�ψ�x, y� � 0, (9)

for the quasi-two-dimensional geometry of the WG-coupled
microrings; Ω � kR is the dimensionless complex frequency,
k is the complex wavenumber, and n is the effective refractive
index. In the simulation, we specify transverse magnetic polari-
zation where ψ represents the z component of the electric field.
The outer radius of the mircorings is set to R � 10 μm, and
the width of the microrings is Rw � 0.13R, the same as the
width of the WG hwg. The edge-to-edge space between the mi-
croring and WG is s � 0.133R, and the edge-to-edge distance
between the two rings is d � 1.6R. The refractive index of the
microrings and WG is n � 3.1, and in the surrounding n is set
to unity. For this setup, four quasi-degenerate modes with
Ω1–4 ≈ 8.3126 − 3.5 × 10−4i can be calculated numerically.
The perturbation is simulated via TPs with variable radii
rTP and fixed refractive index nTP � 1.5. The TPs are placed
with an angle ϕTP � 0.4π and a fixed edge-to-edge distance
dTP � 0.01R to the microring. From now on, the perturbation
strength is defined as ϵ ≡ �rTP∕R�2. As shown in Fig. 4, the
results from the FEM simulation are in very good agreement

with the matrix model. In particular, the correct saturation for
ϵ → 0 is observed as well as the scaling in the intermediate re-
gime with ϵ1∕4 or ϵ1∕2. For larger ϵ ≳ 10−3, deviations from the
matrix model arise. This is, however, expected as such a rela-
tively large TP is no longer a localized perturbation to a micro-
ring, which is assumed in the perturbation matrix HTP

in Eq. (2).
For the WG-coupled cavities without TP, one of the four

mode patterns jψ j is shown in Fig. 5. Note that the computa-
tional domain is adjusted to the geometry for all the simulated
structures in the manuscript, which reduces the FEM grid by
10 to 25 percent compared to a comprising rectangular do-
main. In the mode pattern in Fig. 5, a finite D ≠ 0 does
not lead to a deviation from the idealized case D � 0 that
can be observed by eyes. Thus, all four mode patterns look al-
most identical and consist of a CCW wave in the left ring and a
CW wave in the right ring, which is consistently described by
the two eigenstates �1, 0, 0,�1� of the Hamiltonian H 0 from
Eq. (5) for D � 0.

It should be noted that the mechanisms leading to a finite
backscattering D can be diverse. One is the already mentioned
backscattering at the WG. In a realistic experimental imple-
mentation, the backscattering might also arise from fabrication
tolerances and sidewall roughness. But even in the full numeri-
cal simulations, a finite simulation domain, a finite FEM mesh,
or even computations with machine precision could lead to a
finite D [31]. The latter seems negligibly small as the machine
precision is of the order 10−16. However, a naïve estimate
shows that at an EP4 this could lead to an induced split-
ting, ΔΩ ∼

ffiffiffiffiffiffiffiffiffiffiffi
10−16

4
p

� 10−4.

3. CONSTRUCTION OF HIGHER-ORDER EPS
WITH WG-COUPLED CAVITIES

Previous works in Ref. [35] have demonstrated that a single
cavity can be tuned into an EP2 by coupling it to a WG with
a mirror on one end as such a mirror leads to a fully asymmetric
coupling between CW and CCW waves in the microring. In
this section, we construct systems of N microring cavities that
exhibit an EP of order 2N . In particular, we discuss two
implementations: (i) N cavities that are all coupled to the same
WG [32], which has a mirror at one side, and (ii) N cavities
that are coupled via N � 1WGs [41], where only one WG has
a mirror at the end. Both implementations have in common
that the WG introduces a directional coupling between the

Fig. 4. Frequency splitting ΔΩ [Eq. (6)] for two WG-coupled mi-
croring cavities calculated with FEM simulations.

Fig. 5. Mode pattern jψ j for one of the four modes with
Ω ≈ 8.3126 − 3.5 × 10−4i in two WG-coupled microring cavities.
Red arrows indicate the propagation direction of the field. The color-
map in the simulated domain ranges from blue to yellow.

Fig. 3. Illustration of the perturbation-induced splitting around an
EP6 with frequency ΩEP. For an increasing perturbation strength ϵ the
complex frequencies Ωi (dots) diverge from the EP. The splitting ΔΩ
is defined via Eq. (6) as the largest distance between two of the six
frequencies for a given perturbation.
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cavities as, e.g., a CCW mode in a cavity only couples to the
CW or the CCW mode of the next cavity but not to both CW
and CCW. Then the mirror at the WG end introduces an
asymmetric coupling between CCW and CW waves.

Note that a recent publication by Liu et al. [34] proposed a
setup to implement a higher-order exceptional surface with mi-
croring cavities that, at first glance, looks similar to our pro-
posed schemes. However, our schemes offer two main
advantages. (i) The asymmetric backscattering is induced glob-
ally as it comes from a single mirror at one WG, whereas in
Ref. [34] at each cavity an auxiliary WG element for the asym-
metric backscattering is placed. (ii) In Ref. [34], the position of
the auxiliary WG elements needs to be tuned for the backscat-
tering to be fully asymmetric. In contrast, our setups are rather
robust against the exact position of the mirror. Further note
that the authors of Ref. [34] focused on the lasing properties
of the system, whereas the goal of this section is the frequency
splitting and characteristic behavior of the mode pattern in-
duced by an external perturbation to the system.

A. N Cavities Coupled to One WG with a Mirror
The setup for N microring cavities horizontally coupled via a
single WG with a mirror is shown in Fig. 6(a). For the simu-
lation of the system, we use the same parameters as in Section 2.
The mirror is realized with a slit of gold with refractive index
n � 0.5� 10i. The slit has a width w � hwg∕2 and is placed
l � 1.2R right to the center of the most right cavity and in-
troduces a backscattering coefficient Rm. By simulating a TP
at the most left cavity in the respectiveN -cavity setup, the char-
acteristic 2N th root scaling of the frequency splitting at an
EP2N can be observed in Fig. 6.

Exemplary, the three-ring setup is considered. The effective
Hamiltonian in the basis of CCW and CW waves in each mi-
croring is constructed as

H 0 �

0
BBBBBB@

Ω D A 0 0 0
D Ω 0 0 0 0
0 0 Ω D A 0
0 A D Ω 0 0
0 0 0 0 Ω D� Rm
0 0 0 A D Ω

1
CCCCCCA
, (10)

where it is assumed that a cavity couples solely to its neighbor.
The coupling to the next but one cavity can be neglected. This
assumption is valid, e.g., under critical coupling. For the ideal
case D � 0, the effective Hamiltonian has one eigenvalue Ω
and a single eigenvector �1,0,0,0,0,0�T indicating an EP6 with
a pure CCW eigenstate in the leftmost microring. The
role of the mirror-induced asymmetric backscattering can be
seen even more obviously by reordering the traveling-wave basis
such that the first three components are the CCW waves in
cavities 1, 2, and 3, and the second three entries represent
CW waves in cavities 3, 2, and 1; the cavities are counted from
left to right. Then the effective Hamiltonian assuming D � 0
reads

H 0 �

0
BBBBBB@

Ω A 0 0 0 0
0 Ω A 0 0 0
0 0 Ω Rm 0 0
0 0 0 Ω A 0
0 0 0 0 Ω A
0 0 0 0 0 Ω

1
CCCCCCA
, (11)

which for any Rm ≠ 0 represents an EP6. It also shows that the
system without a mirror at the WG has two EP3 but is arbi-
trarily close to the EP6. The structure of H 0 in Eq. (11) is sim-
ilar to the structure of the Jordan normal form and appears also
in the context of the Hatano–Nelson model of a cylindrical
superconductor [42], where it can be understood as the non-
periodic, fully asymmetric limiting case [25].

The formation of the EP6 is confirmed by FEM simulations
of the dielectric structure as shown in Fig. 7 where the mode
pattern of one of the calculated modes is presented. A difference
to the other five mode patterns cannot be observed by eyes (not
shown) due to the extreme non-orthogonality.

For single-particle sensing, three cases can be distinguished.
The TP can be placed from left to right at cavity 1, 2, or 3 as
indicated by the symbols in Fig. 8(a). These three cases lead
to a different perturbation matrix H �1�

TP�ϵ� � HTP�ϵ� ⊕ 04,4,
H �2�

TP�ϵ�� 02,2⊕HTP�ϵ�⊕ 02,2, or H �3�
TP�ϵ�� 04,4 ⊕HTP�ϵ�

[in the basis used in Eq. (10)]. In the parameter space, these
three cases represent selected perturbation direction, which in

Fig. 6. (a) Illustration of the setup with N microring cavities
coupled to one semi-infinite WG with a mirror at the right-hand side.
(b) The frequency splitting ΔΩ due to a TP with radius rTP at the
leftmost cavity is shown. As a guide to the eye the scaling with ∼ϵα
is shown from bottom to top for (solid) α � 1, (double dashed–
dotted) α � 1∕2, (dotted) α � 1∕4, (dashed–dotted) α � 1∕6,
and (dashed–double dotted) α � 1∕8.

Fig. 7. Mode pattern jψ j at the EP6 for 3 microring cavities coupled
to oneWGwith a gold mirror at the right side. Red arrows indicate the
propagation direction of the field.
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the ideal case of D � 0 results in a frequency splitting
according to ∼ϵ1∕6, ∼ϵ1∕4, and ∼ϵ1∕2, respectively. This cavity-
selective scaling of the splitting is confirmed by FEM simula-
tions of the dielectric structure as shown in Fig. 8(b).

B. N Cavities Coupled via N � 1 WGs
The second setup to generate an EP of order 2N utilizes N
vertically arranged cavities that are coupled via N � 1 WGs;
see Fig. 9(a). The most upper WG has a mirror at a specific
end that induces an asymmetric backscattering between CW
and CCW waves in the adjacent cavity. The most lower
WG is placed to have the same WG-induced internal backscat-
tering for each of the cavities. To verify the respective order of
the EP, a TP at the most lower cavity is placed. As shown in
Fig. 9(b) systematically, the expected scaling of the frequency
splitting can be observed for a variation of the TP radius. In
addition, a cavity-selective scaling of the frequency splitting
is shown in Fig. 9(c) for a four-ring setup.

The effective Hamiltonian describing the four-ring setup in
the basis of CCW and CW waves from the lowest to the upper
cavity reads

H 0 �

0
BBBBBBBBBB@

Ω D 0 0 0 0 0 0
D Ω A 0 0 0 0 0
0 0 Ω D 0 A 0 0
A 0 D Ω 0 0 0 0
0 0 0 A Ω D 0 0
0 0 0 0 D Ω A 0
0 0 0 0 0 0 Ω D� Rm
0 0 0 0 A 0 D Ω

1
CCCCCCCCCCA
: (12)

For D � 0, the Hamiltonian is at an EP8 with eigenvalue Ω
and eigenvector �0,1,0,0,0,0,0,0� that represents a pure CW
wave in the bottom-most cavity. This can be seen well in the
FEM simulations in Fig. 10. Progressing to a finite
D≈ 10−10�−11.4803 − 4.3397i�, Ω≈ 8.3132 − 6.9647 × 10−4i,

and �A,Rm�≈10−4�−2.44547−6.6842i, −1.2194�6.2931i�
(see Appendix B) allows us to capture the correct splitting in-
cluding the cavity-selective sensing with ϵ1∕8, ϵ1∕6, ϵ1∕4, or ϵ1∕2

for a TP at cavity 1, 2, 3, or 4 (from bottom to top respectively);
see Fig. 9(c).

Next, the behavior of the mode patterns for a TP perturba-
tion at a given cavity is analyzed. Therefore, the intensity for
each of the eight mode patterns g in the cavity f is calculated
numerically by integrating the mode pattern. Additionally, per-
forming an average over the eight modes gives the averaged in-
tensity I f in cavity f as

I f � 1

8

X8
g�1

Z
cavity f

jψ g�x, y�j2dxdy: (13)

The intensities I f are then normalized to give relative in-
tensities, i.e.,

P
4
f �1 I f � 1. The behavior of these relative

Fig. 8. (a) Illustration of three microring cavities coupled to one
semi-infinite WG with a gold mirror at the end. The position of a
TP is indicated by colored symbols. (b) The frequency splitting
ΔΩ due to a TP with radius rTP at cavity 1, 2, or 3 is shown by dots.
As a guide to the eye, the scaling with ∼ϵα is shown from bottom to
top for (dashed) α � 1∕2, (dotted) α � 1∕4, and (dashed–dotted)
α � 1∕6.

Fig. 9. (a) Illustration of four WG-coupled microring cavities. The
WGs are infinitely long without backscattering except for the most
upper WG that has a mirror at one end. (b) The frequency splitting
ΔΩ due to a TP with radius rTP at the most lower cavity is shown.
(c) For a four-microring setup the splittingΔΩ due to a TP at cavity 1,
2, 3, or 4 (from bottom to top) is shown. Filled symbols are results
from the FEM simulation. The corresponding open symbols are cal-
culated from the effective Hamiltonian. The lines in (b) and (c) serve
as guides to the eye and represent the scaling ∼ϵα with (solid) α � 1,
(double dashed–dotted) α � 1∕2, (dotted) α � 1∕4, (dashed–dotted)
α � 1∕6, and (dashed–double dotted) α � 1∕8.
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intensities is shown in Fig. 11 for a variation of the TP radius
and a perturbation of each cavity. For very small TP radii,
the intensities converge to the mode pattern at the EP8 (see
Fig. 10), where (almost) all intensity accumulates in cavity 1.
Increasing the TP radius leads to an exponential redistribution
of the intensity. In cavities 2, 3, and 4, it exponentially increases
with the perturbation strength while the relative intensity in
cavity 1 decreases. The exponent of the exponential redistrib-
ution depends on the cavity where the TP is placed. Calculating
the relative intensities from the effective Hamiltonian by ana-
lyzing its eigenvectors gives again an excellent agreement to the
FEM simulations.

In practice, the position at which a TP interacts with a given
cavity might not be controlled precisely. Therefore, Fig. 12
shows the eigenfrequency trajectories for a two-ring and
four-ring setup if the angle ϕTP of the TP is varied. Since
the azimuthal mode number ism � 20, a variation of ϕTP from
π∕2 to π∕2 − π∕m represents a nearly periodic perturbation
leading to a characteristic cyclic rotation of the 2N eigenfre-
quencies in complex plane, which is referred to as chirality
of an EP2N [43,44]. For larger TP radii, the eigenfrequency
trajectories get deformed until eventually one or two frequen-
cies split and form their individual cyclic behavior in the com-
plex plane. Although such a behavior is a change in the
topology of the eigenfrequency trajectories, it is very well de-
scribed by the effective Hamiltonian (see Fig. 12). Consistently
with the sensitivity at a higher-order EP, the separation of such

an eigenfrequency trajectory happens for the four-ring setup at
smaller TP radii as for the two-ring setup [cf. rTP � 0.06R in
Fig. 12(e) and rTP � 0.12R in Fig. 12(j)].

Additionally, the effective Hamiltonian allows for a calcula-
tion of the reflection spectra if the system is excited with a
(real-valued) frequency ω at a WG [26,45,46]. To do so,
the effective Green’s function,

G�ω� � �ω1 −H �−1, (14)

is calculated, where H � H 0 �H �1�
TP is given as a 2N × 2N

matrix with H 0 for the system of the N WG-coupled cavities
[see Eq. (12)] andH �1�

TP represents the perturbation by the TP at
the bottom-most cavity (cf. Appendix B). Consequently, also
the Green’s function is given as a matrix of the same dimensions
as the effective Hamiltonian H . For the reflection spectra, we
consider a monochromatic wave with frequency ω entering
from the left side of the bottom-most WG. Such a wave couples
to the adjacent first cavity exciting a CCW wave. In the

Fig. 10. Mode pattern jψ j at the EP8 for four microring cavities
coupled via WGs and a gold mirror. Red arrows indicate the propa-
gation direction of the field.

Fig. 11. Relative intensity in each microring averaged over the eight
modes in a four-ring setup perturbed by a TP is shown. The cavities
are counted from bottom to top [(d) to (a)] in correspondence to the
cavity position in Fig. 10. Filled symbols are results from the FEM
simulation for a TP at a given cavity. The corresponding open symbols
are calculated from the effective Hamiltonian.
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traveling-wave basis, the excitation is, therefore, described by a
vector with only one nonzero element in the first component.
On the other hand, the light that leads to the reflected intensity
in the most lower WG comes from the CW propagating wave
in the first cavity, which is described by the second component
of a vector in the traveling-wave basis. The matrix element G21

of the Green’s function connects the CCW waves to the CW
waves in the most lower cavity. Thus, the reflection spectra are
obtained as [26]

R�ω� � jG21�ω�Aj2: (15)

In Fig. 13, it is demonstrated that the reflection spectra from
Eq. (15) are in a very good agreement with the FEM simula-
tions for a four-ring setup and a two-ring setup and different
positions ϕTP of the TP.

Depending on the TP position ϕTP, individual peaks can be
seen in the four-ring setup in Fig. 13(b) compared to a broad
peak in the two-ring setup in Fig. 13(a). The reason is that the
four-ring setup supports narrow peaks for the modes, whereas
in the two-ring setup, the peaks associated with the modes are
more broad and, therefore, overlap. Note that in order to sep-
arate the peaks of individual modes, it is also possible to add
gain to the microrings. This typically results in more narrow
peaks of the associated modes such that the modes can be dis-
tinguished in the spectrum.

However, narrowing of the peaks in the spectrum can
already be seen in the passive systems without TP as shown
in Fig. 14 (cf. [24,47]). The peaks in the reflection spectra
are described by powers of a Lorentz curve L�ω� ∼ jω −ΩEPj−2.
Each additional cavity increases the order of the EP by 2, which
gives an additional term of order 2N in the Green’s function at
the EP2N [1,25,48],

Fig. 12. Eigenfrequencies in complex plane for (a)–(e) four-ring and (f )–(j) two-ring setups [see Fig. 9(a)]. The color represents a variation of the
TP angle ϕTP from π∕2 to π∕2 − π∕m with m � 20 being the azimuthal mode number. The TP is placed at the most lower cavity. From left to right
the radius of the TP is increased. Filled dots are results from the FEM simulations. Open circles are calculated from the effective Hamiltonian. The
markers lie nearly on top of each other.

Fig. 13. Reflection spectra R�ω� for the (a) two-ring and the
(b) four-ring setups are shown [see Fig. 9(a)], with a TP at the respec-
tive most lower cavity. The angle ϕTP is varied from π∕2 to π∕2 − π∕m
with m � 20. The TP has a radius rTP � 0.03R. Solid curves are
the full numerical results and dashed curves are computed with the
effective Hamiltonian.
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G�ω� �
X2N
k�1

Mk−1

�ω −ΩEP�k
, (16)

where M 0 � 1 and Mk � �H 0 − ΩEP1�k for k ≥ 1. Thus, the
reflection peaks in the N -ring setup are described by
R�ω� ∼ �L�ω��2N . Consequently, the four-ring setup shows
more narrow peaks than the two-ring setup, which are then
more likely to be separated rather than overlapping for a given
perturbation. Note that the exponent 2N of the Lorentzian
response is the same as the order of the EP if the effective ex-
citation jpi is generic, i.e., M 2N−1jpi ≠ 0 [25]. The line shape
might differ for non-generic excitation and different output
channels [41].

4. SUMMARY

In this paper, we demonstrated two schemes for a handy and
robust implementation of higher-order EPs with WG-coupled
microring cavities. To do so, we synergized two approaches,
namely the directional coupling of cavities via a WG [32]
and the induced asymmetric backscattering from a mirror at
the WG [35]. Thus, in a system of N cavities, an EP of order
2N is realized without complicated fine-tuned parameters. The
order of the EP is verified by TP sensing. It is remarkable that
the sensitivity is cavity-selective. Therefore, the induced fre-
quency splitting not only depends on the perturbation strength,
i.e., the size of the TP, but also on the cavity at which it in-
teracts with the system. Conclusively, the WG-coupled micro-
cavities are ideal systems to implement and study non-generic
perturbations at higher-order EPs. An effective Hamiltonian
based on coupled-mode theory is used to motivate the forma-
tion of the EPs as well as the sensing properties of the systems
including the reflection spectra. Therefore, the effective
Hamiltonian approach has been proven as an intuitive and in-
sightful description of such systems at an EP of second or
higher order.

A topic controversy discussed in recent literature is the
signal-to-noise ratio of EP-based sensors. Some works indicate
no enhancement of the signal-to-noise ratio at EPs [49–52],
whereas others clearly show an enhancement [15,53]. Our pro-
posed setup might be interesting for future studies on this topic

due to its simplicity and versatility to perform measurements at
different WG ports.

Furthermore, recent works such as Ref. [34] show an in-
creasing interest for the use of EP and exceptional surface phys-
ics in photonic devices. Recently employed experimental
platforms range from rather conventional InGaAsP single
and multiple quantum wells [18,54,55] to erbium ions [10],
polymers [56], and perovskites [34], underlining the timeliness
and versatility of EP photonics.

APPENDIX A: PARAMETERS OF THE
PERTURBATION MATRIX

This section describes the process of determining the parame-
tersU and V from the perturbation matrixHTP in Eq. (2). The
basic idea is to compare the numerically determined eigenval-
ues of an unperturbed system consisting of a microring and one
or two WGs with the perturbed system, which includes addi-
tionally a TP of radius rTP placed at an angle ϕTP � π∕2. For
the azimuthal mode number m � 20 and the before-men-
tioned choice of ϕTP, the matrix HTP in Eq. (2) is simplified
because e�i2mϕTP � 1. Within the framework of the coupled-
mode theory, the effective Hamiltonian of the perturbed system
in the traveling-wave basis reads as

H � H 0 �HTP�ϕTP � π∕2�, (A1)

where the matrix H 0 in Eq. (1) describes the effective
Hamiltonian of the unperturbed system. The structure of H
and H 0 is equal for ϕTP � π∕2. Therefore, they have the same
eigenbasis, namely the standing-wave basis. The matrix

M † � 1ffiffiffi
2

p
�
1 1
i −i

�
(A2)

maps from the traveling-wave basis into the standing-wave ba-
sis. By taking the difference

H̃ − H̃ 0 � H̃TP �
�
2V 0
0 2U

�
, (A3)

where H̃ � M †HM , H̃ 0 � M †H 0M , and H̃TP �
M †HTPM , we can connect this result to the numerical simu-
lations. Hence,

V � 1

2
�Ωnum

TP;1 − Ω
num
1 �, U � 1

2
�Ωnum

TP;2 −Ω
num
2 �, (A4)

where Ωnum
TP;1;2 are the numerically determined eigenvalues of

the perturbed and Ωnum
1,2 of the unperturbed system.

In relation to the matrixHTP�ϵ� in Eq. (3), it is said that for
small perturbations arising from a TP with radius rTP, the per-
turbation parameter ϵ should scale with r2TP. This behavior is
illustrated in Fig. 15 where the parameters V and U are deter-
mined with Eq. (A4). For small rTP, the parameter U is orders
of magnitude smaller than V ; therefore, U is negligible in the
matrix HTP in Eq. (2). The scaling of V for small rTP follows
relatively close the r2TP behavior and, therefore, also the pertur-
bation parameter ϵ.

Fig. 14. Reflection spectra R�ω� for a setup with N microring
cavities at an EP2N [see Fig. 9(a)]. Colored curves are results from full
numerical simulations. Dashed curves represent a fit with the 2N
powers of the function L�ω� ∼ jω − ΩEPj−2.
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APPENDIX B: PARAMETERS OF THE
EFFECTIVE HAMILTONIAN

In order to determine the parameters Ω, A, Rm, and D for the
effective Hamiltonian in Eq. (12), the difference between the
eigenvalues of different effective Hamiltonians and the corre-
sponding numerically determined eigenvalues is minimized
under variation of the parameter subset.

The values of the parameters should be nearly independent
from the number of microrings in the system because they
model localized interactions between the traveling wave modes.
Therefore, the two-ring setup [see Fig. 9(a)] is used to calculate
the parameters. As a starting point, the system without a TP is
chosen to determine Ω. The mean value of the four eigenvalues
Ωnum

i with i � 1, 2, 3, 4 from the numerical simulation is set to

Ω � 1

4

X4
i�1

Ωnum
i : (B1)

With this choice of Ω, only the parameter subset
χ � �A,Rm,D� has to be determined. For this purpose, the
two-ring setups with a TP at the upper and a TP at the lower
cavity are considered. We call them S�1� and S�2�, respectively.
These systems provide additional constraints for determining
the parameter set χ. To get even more constraints, the TP ra-
dius rTP is varied at a fixed TP position ϕTP for S�1� and S�2�.
For the effective Hamiltonian formalism, the variation of rTP
manifests itself as a variation from the parameters U and V .
These perturbation parameters U and V are determined as de-
scribed in Appendix A. All the previously mentioned con-
straints are parts of the set ζ. Each element ζi is related to
S�1� or S�2� with a specific parameter configuration. The target
function for the minimization reads as

f �χ� �
X
i

�
min
fσg

X
σ

���Ωeff
j �ζi, χ� − Ωnum

σ�j� �ζi�
���
�
, (B2)

where the eigenvalues of the effective Hamiltonian with a spe-
cific parameter configuration are described through Ωeff

j �ζi, χ�
and the corresponding eigenvalues of the numerical simulation
are referred to as Ωnum

k �ζi�. The fσg refers to the set of all per-
mutations of the four eigenvalues Ωeff∕num

k with k � 1, 2, 3, 4.
The part with minfσg is needed because it is not clear which
eigenvalue of the effective Hamiltonian should be compared
with the numerical one. If too few constraints ζi are considered,

then it is possible to find parameters �A,Rm,D� that do not
cover all numerically observed effects. For that reason, S�1�

and S�2� are both part of the minimization process. It can
be tricky to find well-suited start values χ0 � �A0,Rm;0,D0�
for the minimization of Eq. (B2). The expectation is
jDj ≪ jAj and jDj ≪ jRmj. Hence, it can be beneficial to
set D � 0 fixed and vary over �A,Rm� to get well-suited start
values for the minimization over χ.

As mentioned in Section 2, the coupling parameter D be-
tween CW and CCW waves in a cavity describes more than the
weak backscattering at the WG. In FEM simulations, artificial
surface roughness arises intrinsically due to the finite size of the
mesh elements. Also a finite simulation domain could influence
D. It is recommended to use similar meshes and simulation
domains for the minimization process to determine the param-
eter set �Ω,A,Rm,D�.
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