• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823013 (2021)
Shijie Liu1, Yuanlin Zheng1、2, and Xianfeng Chen1、2、3、4、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Jinan Institute of Quantum Technology, Jinan, Shandong 250101, China
  • 4Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan, Shandong 250358, China
  • show less
    DOI: 10.3788/AOS202141.0823013 Cite this Article Set citation alerts
    Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Nonlinear Frequency Conversion in Lithium Niobate Thin Films[J]. Acta Optica Sinica, 2021, 41(8): 0823013 Copy Citation Text show less
    References

    [1] Boes A, Corcoran B, Chang L et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 12, 1700256(2018). http://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201700256

    [2] Zhang M, Wang C, Cheng R et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 4, 1536-1537(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-12-1536

    [3] Honardoost A, Abdelsalam K, Fathpour S et al. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 14, 2000088(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202000088

    [4] Levy M, Osgood R M, Liu R et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 73, 2293-2295(1998).

    [5] Poberaj G, Hu H, Sohler W et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 6, 488-503(2012). http://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100035

    [6] Fang Z W, Haque S, Lin J T et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator[J]. Optics Letters, 44, 1214-1217(2019). http://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-5-1214

    [7] Wang M, Wu R B, Lin J T et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 1, e9(2019). http://onlinelibrary.wiley.com/doi/10.1002/que2.9

    [8] Luke K, Kharel P, Reimer C et al. Wafer-scale low-loss lithium niobate photonic integrated circuits[J]. Optics Express, 28, 24452-24458(2020). http://arxiv.org/abs/2007.06498v1

    [9] Bazzan M, Sada C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2, 040603(2015). http://scitation.aip.org/content/aip/journal/apr2/2/4/10.1063/1.4931601

    [10] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 9, 1287-1320(2020).

    [11] Ilchenko V S, Savchenkov A A, Matsko A B et al. Nonlinear optics and crystalline whispering gallery mode cavities[J]. Physical Review Letters, 92, 043903(2004). http://www.zhangqiaokeyan.com/academic-conference-foreign_conference-laser-resonators-beam-control-vii-20040127-20040129_thesis/020511328825.html

    [12] Fürst J U, Strekalov D V, Elser D et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator[J]. Physical Review Letters, 104, 153901(2010).

    [13] Sedlmeir F, Hauer M, Fürst J U et al. Experimental characterization of an uniaxial angle cut whispering gallery mode resonator[J]. Optics Express, 21, 23942-23949(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-20-23942

    [14] Strekalov D V, Kowligy A S, Huang Y P et al. Optical sum-frequency generation in a whispering-gallery-mode resonator[J]. New Journal of Physics, 16, 053025(2014). http://arxiv.org/abs/1304.4217

    [15] Moore J, Tomes M, Carmon T et al. Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator[J]. Optics Express, 19, 24139-24146(2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-24-24139

    [16] Moore J, Tomes M, Carmon T et al. Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators[J]. Applied Physics Letters, 99, 221111(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6097717

    [17] Sasagawa K, Tsuchiya M. Highly efficient third harmonic generation in a periodically poled MgO∶LiNbO3 disk resonator[J]. Applied Physics Express, 2, 122401(2009). http://adsabs.harvard.edu/abs/2009APExp...2l2401S

    [18] Wang C, Xiong X, Andrade N et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides[J]. Optics Express, 25, 6963-6973(2017).

    [19] Wang C, Li Z Y, Kim M H et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides[J]. Nature Communications, 8, 2098(2017). http://europepmc.org/articles/PMC5727391/

    [20] Chen J Y, Sua Y M, Fan H et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics[J]. OSA Continuum, 1, 229-242(2018). http://arxiv.org/abs/1805.11476

    [21] Luo R, He Y, Liang H X et al. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation[J]. Laser & Photonics Reviews, 13, 1800288(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113000555.html

    [22] Wang C, Langrock C, Marandi A et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 5, 1438-1441(2018). http://www.researchgate.net/publication/328790292_Ultrahigh-efficiency_wavelength_conversion_in_nanophotonic_periodically_poled_lithium_niobate_waveguides

    [23] Niu Y F, Lin C, Liu X Y et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains[J]. Applied Physics Letters, 116, 101104(2020). http://www.researchgate.net/publication/339840051_Optimizing_the_efficiency_of_a_periodically_poled_LNOI_waveguide_using_in_situ_monitoring_of_the_ferroelectric_domains

    [24] Liu S J, Zheng Y L, Chen X F. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk[J]. Optics Letters, 42, 3626-3629(2017). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-42-18-3626

    [25] Lin J T, Yao N, Hao Z Z et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 122, 173903(2019).

    [26] Chen J Y, Ma Z H, Sua Y M et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings[J]. Optica, 6, 1244-1245(2019). http://www.researchgate.net/publication/335905108_Ultra-efficient_frequency_conversion_in_quasi-phase-matched_lithium_niobate_microrings

    [27] Lu J J, Surya J B, Liu X W et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 6, 1455-1460(2019).

    [28] Jiang H W, Liang H X, Luo R et al. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities[J]. Applied Physics Letters, 113, 021104(2018).

    [29] Li M X, Liang H X, Luo R et al. High-Q 2D lithium niobate photonic crystal slab nanoresonators[J]. Laser & Photonics Reviews, 13, 1800228(2019). http://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201800228

    [30] Liu S J, Zheng Y L, Fang Z W et al. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes[J]. Optics Letters, 44, 1456-1459(2019). http://www.researchgate.net/publication/331716449_Effective_four-wave_mixing_in_the_lithium_niobate_on_insulator_microdisk_by_cascading_quadratic_processes

    [31] Wang M, Yao N, Wu R B et al. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules[J]. New Journal of Physics, 22, 073030(2020). http://iopscience.iop.org/article/10.1088/1367-2630/ab97ea

    [32] Ye X N, Liu S J, Chen Y P et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching[J]. Optics Letters, 45, 523-526(2020). http://www.researchgate.net/publication/337961015_Sum-frequency_generation_in_lithium_niobate-on-insulator_microdisk_via_modal_phase_matching

    [33] Luo R, He Y, Liang H X et al. Optical parametric generation in a lithium niobate microring with modal phase matching[J]. Physical Review Applied, 11, 034026(2019). http://arxiv.org/abs/1810.01299

    [34] Ding T T, Zheng Y L, Chen X F. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip[J]. Optics Letters, 44, 1524-1527(2019). http://www.researchgate.net/publication/331789713_Integration_of_cascaded_electro-optic_and_nonlinear_processes_on_a_lithium_niobate_on_insulator_chip

    [35] Wang D, Ding T T, Zheng Y L et al. Cascaded sum-frequency generation and electro-optic polarization coupling in the PPLNOI ridge waveguide[J]. Optics Express, 27, 15283-15288(2019). http://www.ncbi.nlm.nih.gov/pubmed/31163725

    [36] Luo R, Jiang H W, Rogers S et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator[J]. Optics Express, 25, 24531-24539(2017). http://www.ncbi.nlm.nih.gov/pubmed/29041397

    [37] Jin H, Liu F M, Xu P et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 113, 103601(2014). http://europepmc.org/abstract/med/25238358

    [38] Frank I W, Moore J, Douglas J K et al. Entangled photon generation in lithium niobate microdisk resonators through spontaneous parametric down conversion[C]∥2016 Conference on Lasers and Electro-Optics (CLEO), June 5-10, 2016, San Jose, CA, USA.(2016).

    [39] Guo X, Zou C L, Schuck C et al. Parametric down-conversion photon-pair source on a nanophotonic chip[J]. Light: Science & Applications, 6, e16249(2017).

    [40] Tanzilli S. Tittel W, de Riedmatten H, et al. PPLN waveguide for quantum communication[J]. The European Physical Journal D - Atomic, Molecular and Optical Physics, 18, 155-160(2002).

    [41] Fujii G, Namekata N, Motoya M et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide[J]. Optics Express, 15, 12769-12776(2007).

    [42] Yu M J, Okawachi Y, Cheng R et al. Raman lasing and soliton mode-locking in lithium niobate microresonators[J]. Light: Science & Applications, 9, 9(2020). http://www.nature.com/articles/s41377-020-0246-7

    [43] He Y, Yang Q F, Ling J W et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019). http://arxiv.org/abs/1812.09610

    [44] Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019). http://www.ncbi.nlm.nih.gov/pubmed/30858615

    [45] Wang C, Zhang M, Yu M et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 10, 978(2019). http://www.ncbi.nlm.nih.gov/pubmed/30816151

    [46] Sinclair N, Saglamyurek E, George M et al. Spectroscopic investigations of a Ti∶Tm waveguide for photon-echo quantum memory[J]. Journal of Luminescence, 130, 1586-1593(2010). http://www.oalib.com/paper/3160707

    Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Nonlinear Frequency Conversion in Lithium Niobate Thin Films[J]. Acta Optica Sinica, 2021, 41(8): 0823013
    Download Citation