• Photonics Research
  • Vol. 9, Issue 4, 622 (2021)
Yu Zhang1、2、3, Langlang Xiong1、3, Meng Zhang1、3, and Xunya Jiang1、2、3、*
Author Affiliations
  • 1Engineering Research Center of Advanced Lighting Technology, Fudan University, Ministry of Education, Shanghai 200433, China
  • 2Department of Illuminating Engineering and Light Sources, School of Information Science and Engineering, Fudan University, Shanghai 200433, China
  • 3Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.1364/PRJ.405230 Cite this Article Set citation alerts
    Yu Zhang, Langlang Xiong, Meng Zhang, Xunya Jiang. Fractal topological band-gap structure induced by singularities in the one-dimensional Thue–Morse system[J]. Photonics Research, 2021, 9(4): 622 Copy Citation Text show less
    References

    [1] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [2] X.-L. Qi, S.-C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83, 1057-1110(2011).

    [3] L. Lu, J. D. Joannopoulos, M. Soljacic. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [4] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [5] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [6] Y. Poo, R.-X. Wu, Z. Lin, Y. Yang, C. T. Chan. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett., 106, 093903(2011).

    [7] B. Yan, J. Xie, E. Liu, Y. Peng, R. Ge, J. Liu, S. Wen. Topological edge state in the two-dimensional stampfli-triangle photonic crystals. Phys. Rev. Appl., 12, 044004(2019).

    [8] Y. Peng, B. Yan, J. Xie, E. Liu, H. Li, R. Ge, F. Gao, J. Liu. Variation of topological edge states of 2D honeycomb lattice photonic crystals. Phys. Status Solidi (RRL), 14, 2000202(2020).

    [9] Z. Guo, B. Yan, J. Liu. Straight lined and circular interface states in sunflower-type photonic crystals. J. Opt., 22, 035002(2020).

    [10] J. Zhao, S. Huo, H. Huang, J. Chen. Topological interface states of shear horizontal guided wave in one-dimensional phononic quasicrystal slabs. Phys. Status Solidi (RRL), 12, 1800322(2018).

    [11] Q. Wang, M. Xiao, H. Liu, S. Zhu, C. T. Chan. Optical interface states protected by synthetic Weyl points. Phys. Rev. X, 7, 031032(2017).

    [12] Q. Li, Y. Zhang, X. Jiang. Two classes of singularities and novel topology in a specially designed synthetic photonic crystals. Opt. Express, 27, 4956-4975(2019).

    [13] Q. Li, X. Jiang. Singularity induced topological transition of different dimensions in one synthetic photonic system. Opt. Commun., 440, 32-40(2019).

    [14] T. Hou, R. Ge, W. Tan, J. Liu. One-way rotating state of multi-periodicity frequency bands in circular photonic crystal. J. Phys. D, 53, 075104(2019).

    [15] R. Ge, B. Yan, J. Xie, E. Liu, W. Tan, J. Liu. Logic gates based on edge states in gyromagnetic photonic crystal. J. Magn. Magn. Mater., 500, 166367(2020).

    [16] A. Shi, R. Ge, J. Liu. Side-coupled liquid sensor and its array with magneto-optical photonic crystal. J. Opt. Soc. Am. A, 37, 1244-1248(2020).

    [17] M. Xiao, Z. Q. Zhang, C. T. Chan. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X, 4, 021017(2014).

    [18] A. V. Poshakinskiy, A. N. Poddubny, M. Hafezi. Phase spectroscopy of topological invariants in photonic crystals. Phys. Rev. A, 91, 043830(2015).

    [19] A. I. Goldman, R. F. Kelton. Quasicrystals and crystalline approximants. Rev. Mod. Phys., 65, 213-230(1993).

    [20] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, O. Zilberberg. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett., 109, 106402(2012).

    [21] Y. E. Kraus, O. Zilberberg. Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett., 109, 116404(2012).

    [22] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, Y. Silberberg. Observation of topological phase transitions in photonic quasicrystals. Phys. Rev. Lett., 110, 076403(2013).

    [23] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, Y. Silberberg. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B, 91, 064201(2015).

    [24] A. Dareau, E. Levy, M. B. Aguilera, R. Bouganne, E. Akkermans, F. Gerbier, J. Beugnon. Revealing the topology of quasicrystals with a diffraction experiment. Phys. Rev. Lett., 119, 215304(2017).

    [25] M. A. Bandres, M. C. Rechtsman, M. Segev. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X, 6, 011016(2016).

    [26] H. Huang, F. Liu. Quantum spin Hall effect and spin Bott index in a quasicrystal lattice. Phys. Rev. Lett., 121, 126401(2018).

    [27] H. Huang, F. Liu. Theory of spin Bott index for quantum spin Hall states in nonperiodic systems. Phys. Rev. B, 98, 125130(2018).

    [28] P. A. Kalozoumis, G. Theocharis, V. Achilleos, S. Félix, O. Richoux, V. Pagneux. Finite-size effects on topological interface states in one-dimensional scattering systems. Phys. Rev. A, 98, 023838(2018).

    [29] Y. Ge, M. Rigol. Topological phase transitions in finite-size periodically driven translationally invariant systems. Phys. Rev. A, 96, 023610(2017).

    [30] X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi, J. D. Joannopoulos. Photonic band gaps and localization in the Thue–Morse structures. Appl. Phys. Lett., 86, 201110(2005).

    [31] H. Lei, J. Chen, G. Nouet, S. Feng, Q. Gong, X. Jiang. Photonic band gap structures in the Thue–Morse lattice. Phys. Rev. B, 75, 205109(2007).

    [32] M. Kohmoto, B. Sutherland, K. Iguchi. Localization of optics: quasiperiodic media. Phys. Rev. Lett., 58, 2436-2438(1987).

    [33] N.-H. Liu. Propagation of light waves in Thue–Morse dielectric multilayers. Phys. Rev. B, 55, 3543-3547(1997).

    [34] X. Wang, U. Grimm, M. Schreiber. Trace and antitrace maps for aperiodic sequences: extensions and applications. Phys. Rev. B, 62, 14020-14031(2000).

    [35] T. A. Loring. A guide to the Bott index and localizer index(2019).

    [36] D. Meidan, T. Micklitz, P. W. Brouwer. Topological classification of adiabatic processes. Phys. Rev. B, 84, 195410(2011).

    [37] G. Bräunlich, G. M. Graf, G. Ortelli. Equivalence of topological and scattering approaches to quantum. Commun. Math. Phys., 295, 243-259(2010).

    [38] X. Huang, Y. Yang, Z. H. Hang, Z.-Q. Zhang, C. T. Chan. Geometric phase induced interface states in mutually inverted two-dimensional photonic crystals. Phys. Rev. B, 93, 085415(2016).

    [39] Q. Wang, M. Xiao, H. Liu, S. Zhu, C. T. Chan. Measurement of the ZAK phase of photonic bands through the interface states of a metasurface/photonic crystal. Phys. Rev. B, 93, 041415(2016).

    [40] Y. Wu, C. Li, X. Hu, Y. Ao, Y. Zhao, Q. Gong. Applications of topological photonics in integrated photonic devices. Adv. Opt. Mater., 5, 1700357(2017).

    [41] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Zhang, C. T. Chan. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys., 11, 240-244(2015).

    [42] G. Ma, M. Xiao, C. T. Chan. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys., 1, 281-294(2019).

    [43] F. Baboux, E. Levy, A. Lematre, C. Gómez, E. Galopin, L. Le Gratiet, I. Sagnes, A. Amo, J. Bloch, E. Akkermans. Measuring topological invariants from generalized edge states in polaritonic quasicrystals. Phys. Rev. B, 95, 161114(2017).

    [44] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, C. W. J. Beenakker. Quantized conductance at the majorana phase transition in a disordered superconducting wire. Phys. Rev. Lett., 106, 057001(2011).

    [45] I. C. Fulga, F. Hassler, A. R. Akhmerov. Scattering theory of topological insulators and superconductors. Phys. Rev. B, 85, 165409(2012).

    [46] 46On the transmission map, the width, central frequency, and structure of the FGs are different at two sides of the SL, which is the track of the first-type singularity. If we choose two σ very near the SL, which correspond to the two TM systems, the reflection phase of the left (ϕl) and right (ϕr) TM systems can match well, which satisfies ϕl+ϕr=0. But, due to the slow decaying of the field magnitude, it is difficult to observe the topological edge-state between the two TM systems. However, if we choose σ a little farther away from the SL, due to the gap structure difference, it is difficult to satisfy ϕl+ϕr=0 at a certain frequency inside the two gaps.

    Yu Zhang, Langlang Xiong, Meng Zhang, Xunya Jiang. Fractal topological band-gap structure induced by singularities in the one-dimensional Thue–Morse system[J]. Photonics Research, 2021, 9(4): 622
    Download Citation