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The physical origin of the fractal topological band-gap structure in the one-dimensional Thue–Morse system has
been revealed, which is characterized by the evolutions of two types of topological singularities with zero-
scattering properties and the paths of phase vortex points, which are the mirrored paths of the first-type
singularities. The field distribution of the upper and lower gap-edge states will interchange when the traditional
gaps are closed and reopened. The topologically protected edge-states are found at both traditional gaps and
fractal gaps. Our work broadens the topological properties of quasicrystals or aperiodic systems and provides
potential applications in new optoelectronic devices. © 2021 Chinese Laser Press
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1. INTRODUCTION

Topological band-gap (TBG) structures have received extensive
attention for electronic and photonic systems [1,2]. Many fan-
tastic topological phenomena are realized in photonic crystals
(PhCs) based on the topological photonic band-gap (TPBG)
[3,4], such as topological edge states [5–10], Weyl points
and nodal lines [11–13], one-way rotating states [14], logic
gates [15], and sensors [16]. The TPBGs of one-dimensional
(1D) systems are intensively studied, because the systems are
simple and can be solved in strict theory. Recently, the connec-
tion between the surface impedance of 1D semi-infinite PhC
and the geometry phase, also called the Zak phase, was revealed
[17]. More importantly, in this original work, a simple method
with the self-consistent gauge, based on the reflection coeffi-
cient of the semi-infinite 1D PhC models, is established to de-
termine the singularities, which dominate the evolution of
TPBG of 1D PhCs. With the introduction of synthetic dimen-
sions or parameter freedoms to the 1D periodic systems, rich
topological phenomena, such as the Weyl points and the nodal
lines (surfaces) in high-dimensional spaces, are also observed
and well studied [11–13,18]. In the reflection phase map, there
are phase vortex points (PVPs), but only the PVPs whose ei-
genvector turns to zero are singularities [11,12]. It is revealed
that the different evolutions of singularities between bands cor-
respond to different topological phase transitions [12,13].

Different from the periodic systems, the quasicrystals (QCs)
and aperiodic systems, which lack translational symmetry but
possess long-range order, display Bragg diffraction spots, and
also have complex band-gap structures. Extremely rich trans-
port properties and complex band-gap structures of QCs also
imply the rich topology beyond the periodic systems [19]. The
first effort to strictly define the topological properties of band-
gap structures is done by Kraus et al. [20,21] for 1D QCs, and
the topologically protected edge-states are demonstrated exper-
imentally in photonic systems [20,22,23]. The topology of
QCs can also be directly retrieved from diffraction experiments
[24]. More excitingly, very recently the phenomenon of fractal
TBG (FTBG), which is not observed in the periodic systems,
has been found in two-dimensional (2D) Floquet QCs and the
Bott index originally to describe the topology of random sys-
tems is introduced into QCs to characterize the topological
phase transition [25]. Characterized by a none-zero spin
Bott index, the quantum spin Hall (QSH) effect is also realized
in Penrose-type QC lattices, associated with robust edge-states
and quantized conductance [26,27]. However, to date, unlike
the periodic systems whose topological phase transitions are
from the evolution of singularities, any relation between
FTBG of QCs and the singularities has never been suggested
nor has ever been explored. Without understanding the rela-
tion, we cannot answer certain questions, such as “what is
the origin of FTBG and how does it evolve with the structural
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parameters of QCs?” or “what are the similarities and
differences between TBG of periodic systems and QCs?”.

Since there is lack of support from Bloch’s theorem, how
waves (electrons, photons, or otherwise) are transmitted
through QCs or aperiodic systems is not fully resolved to this
day [25]. Generally, researchers have to deal with finite struc-
tures for the study of QCs, so that the study of finite-length
PhCs is more instructive. Also, inspired by the studies of
1D periodic systems [12,13,18] and with the introduction
of synthetic dimensions or parameter freedoms to QCs, more
complex band-gap structures in higher dimensional space can
possibly open a new window for us to understand the FTBG of
QCs. The topological properties of the 1D periodic systems are
signed by the singularities of the reflection coefficient, which is
from the zero-scattering of each cell, resulting in the non-zero
Zak phase or Chern number [12,13,17], even for finite peri-
odic systems [28]. Then it is reasonable for us to make the
assumption that the topological number of the 1D QCs or
aperiodic systems can also be obtained from the singularities
characterized by zero-scattering. Precise theory needs to be es-
tablished based on the Bott index of 1D QCs and aperiodic
systems, which has been proved to be equivalent to the
Chern number in 2D translationally invariant systems [29].
In previous works [30,31], it is revealed that the band-gaps
of QCs and aperiodic systems can be separated into two classes,
the traditional gaps (TGs) and the fractal gaps (FGs), due to the
scattering from the periodic interfaces and the multi-scale
nested structure of interfaces, respectively. It is natural to think
that the topological properties of TGs and FGs may be quite
different because of their different scattering origin.

In this work, we show that the FTBG features of 1D Thue–
Morse (TM) systems with one synthetic dimension are gener-
ated by the evolutions of two types of singularities and PVPs.
The former are characterized by the zero-scattering of the two
basic scatterers that compose the TM systems, while the latter
are the ordinary transmission resonance from Bragg scattering.
Both TGs and FGs of TM systems are closed and reopened
when the evolution paths of the first-type singularities pass
through them. The second-type singularities only appear when
the optical path ratio between two kinds of layers satisfies the
ratio of two odd integers, and is indicated by the closing of
TGs. A π-phase-jump of the reflection coefficient when a TG
or FG is closed and reopened is the sign of the topological phase
transition. Before and after topological phase transition, unlike
the 1D periodic systems whose upper and lower gap-edge states
will interchange both the spatial inversion symmetry (SIS) and
the field distribution, only the latter will appear for TM systems
because of the absence of SIS. The topologically protected
edge-states are also found for both TGs and FGs. Although this
work is done for 1D TM systems, we believe the similar gen-
eration mechanism of FTBG is also available for other 1D or
higher dimensional QCs and aperiodic systems.

2. STRUCTURE

The 1D TM system can be generated by the recursive relation-
ship Sn � Sn−1 � S̃n−1, S1 � AB, where the S̃n−1 is obtained
by exchanging A and B in the Sn−1. For example, an S3 TM
system can be represented as ABBABAAB [30]. The system is

composed of the dielectric layers A and B with widths dA and
dB , the relative permittivities ϵA � 4 and ϵB � 6.25, and the
relative permeability μA � μB � 1, respectively. Without loss
of generality, we suppose that the background material outside
the finite TM system is the same as the A-kind layer. So all B-
kind layers can be thought as scatterers, and they are submerged
inside the background material. The electric field in the
ith layer can be written as Ei�z� � A�

i eiki�z−zi� � A−
i e−iki�z−zi�.

The transfer matrix between layers can be expressed as
Mi�A�

i ,A−
i �T � �A�

i�1,A
−
i�1�T . A�

i and A−
i are the coefficients

of the forward and backward electric field in the ith layer. ki is
the wave vector in the ith layer. Mi is the transfer matrix be-
tween layers. The coefficients of transmission and reflection
and the field distribution can be obtained by the transfer matrix
of a finite TM system. The central wavelength of themth TG is
2
m �l A � l B�, where l A � ffiffiffiffiffi

ϵA
p

dA and l B � ffiffiffiffiffi
ϵB

p
dB are optical

paths of layer A and B, respectively [31]. In this work, l A � l B
is set as 600 nm, while the structural parameter is σ � l B

lA�l B
.

Our study is focused on the frequency regions below the
third TG.

It should be noted that the band-gap structure becomes
more and more detailed with the increasing order of TM sys-
tems. However, when the TM order m is large enough, e.g.,
m > 4, the main band-gap structure of TM systems becomes
stable, and the physics studied in this work is not influenced by
the order of TM systems. So when we discuss the TGs and FGs,
we generally choose the order m (even or odd) of the system
larger than four, and it is irrelevant with the topology of
band-gap structure of TM systems. The main difference be-
tween even-order and odd-order systems is the location of in-
version center, which is only important when we use a certain
order TM as a super-cell with a periodic boundary condition
and study the topology of the band-gap of such periodic sys-
tems (see Appendix A).

3. RESULTS AND DISCUSSION

To have a comprehensive understanding about the singular-
ities, we first observe the evolution of the PBG structure with
different σ for a finite TM system. Analog to the periodic sys-
tems, from the observation of PBG of an S7 TM system, we
find that there “seemingly” are two types of singularities with
the judgement of perfect transmission [28] and other criterions,
such as the π-phase-jump of reflection coefficient, which will be
discussed later. Figures 1(a)–1(c) are the transmission spectra of
an S7 TM system with σ � 5

12 ,
1
2 ,

7
12, and the two types of sin-

gularities are indicated by the red and blue dots, respectively.
The first-type singularities (red dots) satisfy the frequency con-
dition sin�kBdB� � 0, which is also the condition for the sin-
gularities in 1D PhCs [17]. We find that when the first-type
singularities pass through a TG or FG, both of them will be
closed and reopened. The second-type singularities (blue dots)
only appear when the TGs are closed and reopened. The con-
dition for the existence of the second-type singularities will be
given in the following section.

To understand the field distribution characteristic of
singularities, the electric field jE�z�j (black lines) of states at
singularities and the refractive index distributions (blue lines)
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are shown in Figs. 1(d)–1(f ) for a 1D PhC and a TM system,
respectively. The 1D PhC shown in Fig. 1(d) is composed with
the same two kinds of layers as the TM system in Fig. 1(b). It is
known that if we take B-kind layers as the scatterers in the back-
ground material of A-kind, the zero-scattering occurs at the
singularities of 1D PhC [28]. Because of the zero-scattering
of B-kind layers, the jE�z�j of a finite 1D PhC in Fig. 1(d)
shows two special properties, (i) the flat field profile through
the whole system, which means the amplitude of total field is
unchanged, (ii) the flat field amplitude in A-kind layers, which
means the field in A-kind layers only contains the forward
propagating component. Figures 1(e) and 1(f ) also show the
similar zero-scattering properties at two types of singularities
of TM systems. Because of the same frequency condition of
the singularities, the jE�z�j shown in Fig. 1(e) has the same
properties as those in Fig. 1(d). For the second-type singular-
ities, the jE�z�j is more complex. First, the field profile is still
flat through the whole system, which implies the zero-
scattering property of the whole TM system. Second, from
these A-kind layers with flat field amplitude, we can find
that the scattering from S2 � ABBA and S̃2 � BAAB is zero
for the state of the second-type singularities. Because any TM
system whose order is greater than two can be decomposed into
S2 � ABBA and S̃2 � BAAB, the scattering of the whole TM
system should be zero for all second-type singularities.

The physical origin and the field distribution of the first-
type singularities can be explained by the transfer matrix
method. Regarding the A-kind layers as the background
material, we can find two kinds of scatterers, (A)B(A) and

(A)BB(A) in the TM system. The elements of the transfer ma-
trix for scatterer (A)B(A) are M 11 �M�

22 � cos�kBdB��
i
2

�kA
kB
� kB

kA

�
sin�kBdB�, M 12 �M�

21 � − i
2

�kA
kB
− kB
kA

�
sin�kBdB�.

When the condition of the first-type singularities sin�kBdB��0
is satisfied, the transfer matrix becomes I or −I, where I is the
unitary matrix. For scatterer (A)BB(A), we can insert an infinite
thin A-kind layer between two B-kind layers, and then the
transfer matrix of (A)BB(A) becomes I . Obviously, at such a
TM system, the incident field can not sense the scattering
of B-kind layers at all.

The physical origin of the second-type singularities, which
appear only when the mth TG is closed, can also been analyzed
by similar method. For the central wavelength of the mth TG,
the second-order trace map [32–34] is

x2 �
�
1 −

1

2

� ffiffiffiffiffi
ϵA

p
ffiffiffiffiffi
ϵB

p �
ffiffiffiffiffi
ϵB

p
ffiffiffiffiffi
ϵA

p
��

cos�4mσπ� � 1

� 1

2

� ffiffiffiffiffi
ϵA

p
ffiffiffiffiffi
ϵB

p �
ffiffiffiffiffi
ϵB

p
ffiffiffiffiffi
ϵA

p
�
: (1)

The sufficient and necessary condition of the mth TG being
closed [31] is x2 � 2, and then we have σ � n

2m , n ∈ N �.
We emphasize that this condition is different from the mth-
gap-closed condition of 1D PhC, which is σ � n

m and also
the condition of nodal line (surface) in the higher-dimensional
space with synthetic dimensions [12]. The new condition
causes several special properties of the TM system. Firstly,
for the mth TG, there are 2m − 1 closing points with σ chang-
ing in the TM system, while there are m − 1 closing points in
1D PhC. Secondly, for the mth gap of the TM system, besides
the m − 1 closing points which satisfy sin�kBdB� � 0, there are
m second-type singularities satisfying the condition

σ � 2n − 1
2m

, n ∈ N �: (2)

The physical explanation of the condition for second-type sin-
gularities is the zero-scattering of S2 � ABBA and
S̃2 � BAAB, which could be thought of as second-order units
of the TM system. From the trace map theory [31], all traces of
higher order units also satisfy xn � x2n−2�xn−1 −2��2� 2,
which means the TGs are closed for all ordered TM systems
when the condition x2 � 2 is satisfied. It is noted that the first
TG can be closed for TM systems while it is always opened for
1D PhCs.

We note that two types of topological singularities in this
work have not been strictly demonstrated so far. The gap-
closing-reopening is a phenomenon of topological transition,
but could not be used as the judgement of topological transi-
tion or the existing of topological singularities. Zero-scattering
is a much stronger support of the existing of topological sin-
gularities, but still not enough. The theoretical demonstration
of two types of singularities could be done by counting the
number change of resonant modes in upper and lower bands
before and after the gap-closing-reopening, which can be re-
garded as the strict characteristic of topological phase transition
for 1D aperiodic systems [35].

Next we will study the maps of transmission and reflection
phases to show the origins and characteristics of FTBG of QCs

Fig. 1. (a)–(c) Transmission spectra of the S7 TM system with the
structural parameter σ � 5

12 ,
1
2 ,

7
12, respectively. The central positions

of the first three orders of TGs are labeled by dotted lines. The red dots
and blue dots indicate two types of singularities. (d) The refractive
index distribution (blue line) and jE�z�j (black line) of the PhC at
singularity with frequency f � 5 × 1014 Hz and the same parameters
as in (b). (e) and (f ) Refractive index distribution (blue lines) and
jE�z�j (black lines) of the TM system at two types of singularities with
frequencies f 1 � 5 × 1014 Hz and f 2 � 2.5 × 1014 Hz, respectively.
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and aperiodic systems. First, we introduce a phase space {σ, f }
with the synthetic dimension of structural parameter σ and the
frequency f dimension. The transmission map of the S5 TM

system is shown as Fig. 2(a). The blue (red) area indicates the
low (high) transmission region, corresponding to the gap
(band) area. At first glimpse, we can see the significant self-sim-
ilarity feature as the rhombus region signed by the white dashed
lines. The self-similarity is from the red (high-transmission)
lines cutting the whole map into different regions and the re-
peated pattern of TG and FG existing in each region. The
deeper physics is more clearly shown by the reflection phase
map in Fig. 2(b). Theoretically, the absolute phase of the re-
flection coefficient has no physical meaning because it can
be eliminated by redefining the starting point. However, with
the strictly defined common starting point, the phase difference
of reflection from different systems has physical meaning,
which can be used to determine the different topology of
the systems. The sign of the reflection phase and the corre-
sponding surface impedance can be used to characterize the
topology of photonic crystals [17,36–40], acoustic systems
[41,42], and quasicrystals [10,43]. Further more, it is math-
ematically demonstrated that the topology of the systems,
which could be periodic, quasi-periodic or random, could be
characterized by the reflection matrix [44,45]. In Fig. 2(b),
the red (high-transmission) lines in Fig. 2(a) can be separated
into two classes according to their different properties. We find
that the white lines characterized by the π-phase-jump satisfy
the condition of the first-type singularities sin�kBdB� � 0, and
we call them singular lines (SLs). Obviously, the SLs are evo-
lution paths of the first-type singularities, which will close all
TGs and FGs on their paths and cause the topological phase
transitions for both TGs and FGs. The black lines are the mir-
rored lines (MLs) which satisfy the condition sin�kAdA� � 0,
and we will show that these lines connect PVPs. In addition to
the two classes of high-transmission lines, the self-similarity in
Fig. 2(a) is also characterized by the closing of TGs, which are
signed by white circles for the first and second TGs, respec-
tively. As discussed above, the closing points of TGs are
corresponding to the second-type singularities which cause
the topological phase transition only at TGs. Then we can ob-
tain the origin of self-similar FTBGs in the TM system, which
are constructed by the evolution paths of the first-type singu-
larities, their mirrored lines, and the second-type singularities
together.

For more details of the FTBG, we carefully studied two
special cases of the transmission and reflection phase maps
around the two types of singularities, which are shown in
Figs. 2(c), 2(d) and Figs. 2(e), 2(f ), respectively. In Figs. 2(c)
and 2(d), an SL and an ML intersect at the central frequency of
the second TG (signed by two white dashed lines). The second
TG is closed since the SL cuts through it, and there is a topo-
logical transition with a π-phase-jump at two sides of SL. Along
the ML represented by the black solid line in Fig. 2(d), we can
find a series of PVPs indicated by the white circles which are
corresponding to the ordinary resonant transmission for differ-
ent systems. In the vicinity of the SL and ML intersection, a
high-transmission in a wide frequency range is indicated by the
white solid line in Fig. 2(c). When σ � 1

2, the relative band-
width of the transmittance higher than 0.9 can reach 30%.
As illustrated as Fig. 2(g), the high-transmission region is also
robust against 10% disorder strength introduced into dA, when

Fig. 2. (a) Transmission map of the S5 TM system in the parameter
space {σ, f }. The blue (red) area indicates a gap (band). (b) The re-
flection phase map of the S5 TM system. The first-type singularities
are located at the singular lines (white lines), which are characterized
by the π-phase-jump. The black lines are the mirrored lines. Both of
them form the basic structure of the FTBG feature. (c), (d) and
(e), (f ) Local maps of transmission and reflection phase around the
first-type and second-type singularities, respectively. A series of PVPs
are indicated by the white circles in (d). (g) Transmission distribution
error graph of the S5 TM system after 500 times is calculated when the
disorder intensity is 0.1.
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the optical length l A � l B is kept as constant. Such a
robust high transmission case in wide frequency range is quite
rare in low-dimension systems, which can be used to design
specific optoelectronic devices. In Figs. 2(e) and 2(f ), there
is a second-type singularity at the central frequency of the first
TG when σ � 1

2. Focusing on the frequency range of the first
TG (signed by the white dashed lines) and increasing σ con-
tinuously near σ � 1

2, a typical topological transition appears
such that the first TG becomes thinner, totally closed, and then
reopened. Exactly at the point with f � 2.5 × 1014 Hz and
σ � 1

2, a π-phase-jump occurs which makes it possible to realize
the topological edge-state in the first TG.

An important sign of topological phase transition in 1D
binary PhC is the spatial symmetry switching (symmetry to
antisymmetry or antisymmetry to symmetry) guaranteed by
the SIS for the upper and lower gap-edge states when a gap
is closed and reopened [17]. Although the TM systems lack
the SIS, we can still find a similar sign for the topological phase
transition of such aperiodic systems. For a 1D binary PhC, be-
sides the symmetry switching, there is a field-distribution-
interchange (FDI) phenomenon occurring for the upper and
lower gap-edge states at the topological phase transition. For
example, when the singularity is located at the lower band,
the field of the upper gap-edge state is concentrated within
the layers, while that of the lower gap-edge state is concentrated
at the interfaces between the layers. Actually, such an FDI for
gap-edge states widely exists at the topological phase transition
in 2D PhCs where the gap is closed as a Dirac point and re-
opened, and the chiral properties are also interchanged. For a
TM system, an FDI clearly exists when the first-type singularity
passes through a TG, which is shown in Figs. 3(a)–3(c).
Comparing Figs. 3(b) and 3(c), the field distribution almost
perfectly interchanges for the upper and lower gap-edge states
after the topological phase transition. Such an FDI also exists

for the topological phase transition when the TG is closed by
the second-type singularities. To better demonstrate the topo-
logically nontrivial properties of the TM system, we use a cer-
tain order TM structure as a super-cell and set periodic
boundary conditions to the super-cell, which is the method
to study the topology of quasi-crystal systems in other works
[10,43]. Then, we obtain all the gaps of TM systems and
see the gap-closing-reopening process with different σ.
Surprisingly, we find the change of the spacial inversion sym-
metry of the upper and lower gap-edge states, which is the typ-
ical sign of topological phase transitions of periodic systems (see
Appendix A).

The topologically protected edge-states are widely studied
for topologically nontrivial systems. It is well known that
the condition for the existence of an interface state can be rep-
resented as Z SR � Z SL � 0, where Z SR and Z SL are the surface
impedance on the right-hand side and left-hand side of the
boundary. The relation between the impedance ZS and the re-
flection coefficient r is ZS � 1�r

1−r Z 0, where Z 0 is the vacuum
impedance [17]. In Fig. 2 and Appendix A, we have shown
that, before and after the gap is closed, the reflection phase
of the gap changes from 0 to π or −π to 0, and the sign of
the corresponding surface impedance changes from positive

Fig. 3. (a) Local transmission map near the second TG of the S7
TM system in the parameter space. The blue (red) area indicates a gap
(band). A (B) is the lower (upper) gap-edge state marked by a yellow
dot (triangle) when σ � 0.4. C (D) is the lower (upper) gap-edge state
marked by a green dot (triangle) when σ � 0.6. (b) The jE�z�j of state
A (B) is indicated by the blue (red) lines. (c) The jE�z�j of state C (D)
is indicated by the blue (red) lines. The black lines show the refractive
index distribution, s and L means the total length of the system.

Fig. 4. (a) Structure composed of two S7 TM systems which are
spliced together. The structural parameters of the left and right
TM systems satisfy σl � 3

5 and σr � 2
5, respectively. The black dashed

line indicates the interface, and the blue (yellow) areas indicate A-kind
(B-kind) layers. (b) The transmission spectrum of the structure shown
in (a). (c) The jE�z�j of the topologically protected edge-state with a
frequency satisfying f � 2.5 × 1014 Hz. (d) Edge-states in the space
of the reflection phase ϕ and frequency f {ϕ, f } when the S5 TM
system with σ � 0.4 is connected to a reflector with an adjustable
phase.
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infinity to 0 or 0 to negative infinity. So there must be a
topological edge-state when we connect two TM systems with
reflection phases θr ∈ �0, π� and θl ∈ �−π; 0�, since the phase
requirement of a bound state can always be satisfied for a fre-
quency in the gap range. For FTBG, physically, the π-phase-
jump beside the two types of singularities in Fig. 2 guarantees
the existence of the topological edge-states in both TGs and
FGs when we connect two TM systems with different σ at
two sides of a singularity. The specific structure to realize the
topological edge-state at central frequency f � 2.5 × 1014 Hz
of the first TG, which is closed at σ � 1

2 by the second-type
singularity, is shown as Fig. 4(a). Figure 4(b) shows the trans-
mission spectrum of the structure shown in Fig. 4(a) and a dis-
tinct transmission peak at the center of the first TG is marked
by a black arrow. Figure 4(c) shows the jE�z�j of the topologi-
cally protected edge-state, which exponentially decays at both
TM systems from the interface between them.

In fact, to show the existing of a topologically protected
edge-state, we choose any value of σ, as long as Z SR � Z SL � 0
is satisfied in the gap. To better show that the edge-state is
topological, we propose to connect the S5 TM system with
σ � 0.4 which is topologically non-trivial and an artificial re-
flector with adjustable reflection phase ϕ tuned from 0 to π. As
illustrated as Fig. 4(d), the edge-states are represented by the
blue circles for different ϕ, and the gray areas indicate the band.
Obviously, an edge-state crosses the entire gap, because of the
topology difference.

When FGs are closed by the first-type singularities, the
topologically protected edge-state can also be realized. A series
of FGs of an S8 TM system are shown in Figs. 5(a) and 5(b),
where the white line in the reflection phase map is the SL with
π-phase-jump. Nevertheless, the physical origin of FGs is much
more complicated [31]. Unlike TGs, the FGs are obviously
asymmetric in the parameter space at two sides of the SL shown

in Figs. 5(a) and 5(b), which makes it much difficult to choose
appropriate structural parameters to realize the topologically
protected edge-state between two TM systems [46]. Here
we give an example to show the edge-state in the FG. In
Fig. 5(c), a distinct transmission peak with the frequency
f � 4.156907 × 1014 Hz can be found in the original gap
area. The jE�z�j of the topologically protected edge-state is
shown in Fig. 5(d) with the exponential decay from the inter-
face between two TM systems.

Further theoretical and experimental research can be carried
out from the following aspects. Firstly, the relationship between
the topological number of QCs (the change of Bott index) and
the evolution of singularities can be explored in detail.
Secondly, the robust edge-states with high-Q can be experimen-
tally demonstrated, and the broadband transparent feature
caused by the topological properties of QCs can be widely used
on optical or electromagnetic device design. Thirdly, the
mechanism based on singularities could be extended to the
high-dimensional QCs, such as the study of more complicated
singularities and the characteristics of their evolution paths.

4. CONCLUSION

In conclusion, we study the FTBG feature of a 1D TM system
in the structural parameter-frequency space, which is generated
by the evolving paths of two types of topological singularities
and the PVPs. The first-type singularities can evolve along π-
phase-jump lines which satisfy the condition sin�kBdB� � 0,
while the paths of PVPs, which satisfy the condition
sin�kAdA� � 0, are the mirrored lines of the evolving paths
of the first-type singularities. The second-type singularities ap-
pear in the mth TG when the structural parameter satisfies
σ � 2n−1

2m , n ∈ N �. The self-similarity of the FTBG feature
could be understood by the reappearing satisfaction of these
conditions. Different from 1D PhCs, there is no symmetry-in-
terchange at the topological transition in a TM system, while
the FDI of the upper and lower gap-edge states will take place
in a TM system before and after the TG closing, which can be
regarded as a special feature of the topological phase transition
in the QCs. The topologically protected edge-states with the
exponential decay from the interface between two TM systems
are realized at both TGs and FGs. These works will open new
windows to understand the fractal topological band-gap
structures.

APPENDIX A: THE INVERSION CENTER AND
SPACIAL INVERSION SYMMETRY FOR TM
SUPER-CELLS WITH PERIODIC BOUNDARY
CONDITIONS

Generally, for a finite TM system, there is no inversion center
due to the lack of translational symmetry. But, if we use a
certain-order-TM structure as a super-cell and set a periodic
condition on the super-cell, we can find two inversion
centers for both odd- and even-ordered TM super-cells. We
call such systems super-cell-TM systems. For an odd-order
S2m�1�m ∈ N �� TM super-cell, the two inversion centers
are the middle positions of the S2m and S̃2m TM super-cells,
while these, for even-order or S2m TM super-cells are the start

Fig. 5. (a) and (b) Maps of transmission and the reflection phase at
the initial position of the S8 TM system in the parameter space.
(c) Transmission spectrum near the edge-state corresponding to the
structure composed of two S8 TM systems with σl � 0.5458 and
σr � 0.6333. (d) The jE�z�j of the topologically protected edge-state
with frequency f � 4.156907 × 1014 Hz.
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point and the middle position, respectively. For example, the S4
TM system with periodic boundary conditions can be repre-
sented as …jABBABAABjBAABABBAj…, and the symbol
j means one inversion center. Meanwhile, ϵz�z inv � ϵ−z�z inv
and Ez�z inv � E−z�z inv , where z inv means the coordinate of
the inversion center, are automatically satisfied. The super-
cell-TM systems have almost the same main gaps as the TM
systems, and also show the gap-closing-reopening processes
as TM systems with different σ. It has been demonstrated that
the reflection phase in the gap range at one inversion center is
from 0 to π or −π to 0 in the binary 1D PhCs [17]. Similarly,
under periodic boundary conditions, the reflection phase of a
gap at the inversion center in the super-cell-TM system is also
from 0 to π or −π to 0. So the gaps can be divided into two
types according to the different range of the reflection phase
with different topological properties.

It has been demonstrated that the changes of the spatial in-
version symmetry of the upper and lower gap-edge states, can
be regarded as a strong evidence of topologically nontrivial
phase transition [12,13,17]. For the super-cell-TM systems,
the reflection phase of the gap-edge can only be 0 or π. The
total electric field at the inversion center can be represented
as �1� eiθr �Ei, where θr and Ei are the reflection phase
and incident wave, respectively. Choosing a particular inversion
center, the gap-edge state is symmetric (S-state) with θr � 0,
while that is antisymmetric (A-state) with θr � 0.

Here we choose an S5 super-cell-TM system as an example
where σ � 0:125; 0:4; 0:6; 0:875, corresponding to four

areas in the second TG of the TM system. The jE�z�j of the
upper and lower gap-edge states are shown in Fig. 6. For the
certain inversion center (red dash line), the symmetry of jE j of
the upper and lower gap-edge states is exchanged before and
after the gap is closed. For example, the upper (lower) gap-edge
state is A-state (S-state) with σ � 0.125, while the upper
(lower) gap-edge state is S-state (A-state) with σ � 0.4. In fact,
in all processes of gap closing and reopening of TM systems
caused by two types of singularities, whether it is TG or
FG, this change of spacial inversion symmetry can be observed
in the super-cell-TM systems as long as we select the appropri-
ate inversion center. From the similar studies of quasi-crystals
with super-cells [10,43], we can conclude that the gap-closing-
reopening caused by two kinds of singularities of TM systems is
really the topological phase transition.
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