• Advanced Photonics
  • Vol. 5, Issue 5, 056001 (2023)
Lixin He1, Yanqing He1, Siqi Sun1, Esteban Goetz2, Anh-Thu Le2, Xiaosong Zhu1, Pengfei Lan1、*, Peixiang Lu1、3、*, and Chii-Dong Lin4
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Physics, Wuhan, China
  • 2University of Connecticut, Department of Physics, Storrs, Connecticut, United States
  • 3Wuhan Institute of Technology, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan, China
  • 4Kansas State University, Department of Physics, Manhattan, Kansas, United States
  • show less
    DOI: 10.1117/1.AP.5.5.056001 Cite this Article Set citation alerts
    Lixin He, Yanqing He, Siqi Sun, Esteban Goetz, Anh-Thu Le, Xiaosong Zhu, Pengfei Lan, Peixiang Lu, Chii-Dong Lin. Attosecond probing and control of charge migration in carbon-chain molecule[J]. Advanced Photonics, 2023, 5(5): 056001 Copy Citation Text show less
    References

    [1] L. S. Cederbaum, J. Zobeley. Ultrafast charge migration by electron correlation. Chem. Phys. Lett., 307, 205-210(1999).

    [2] A. I. Kuleff, J. Breidbach, L. S. Cederbaum. Multielectron wave-packet propagation: general theory and application. J. Chem. Phys., 123, 044111(2005).

    [3] J. Breidbach, L. S. Cederbaum. Universal attosecond response to the removal of an electron. Phys. Rev. Lett., 94, 033901(2005).

    [4] F. Remacle, R. D. Levine. An electronic time scale in chemistry. Proc. Natl. Acad. Sci. U. S. A., 103, 6793-6798(2006).

    [5] A. I. Kuleff, S. Lünnemann, L. S. Cederbaum. Electron-correlation-driven charge migration in oligopeptides. Chem. Phys., 414, 100-105(2013).

    [6] M. Vacher, M. J. Bearpark, M. A. Robb. Communication: oscillating charge migration between lone pairs persists without significant interaction with nuclear motion in the glycine and Gly-Gly-NH-CH3 radical cations. J. Chem. Phys., 140, 201102(2014). https://doi.org/10.1063/1.4879516

    [7] A. Bruner et al. Attosecond charge migration with TDDFT: accurate dynamics from a well-defined initial state. J. Phys. Chem. Lett., 8, 3991-3996(2017).

    [8] N. V. Golubev, A. I. Kuleff. Control of charge migration in molecules by ultrashort laser pulses. Phys. Rev. A, 91, 051401(R)(2015).

    [9] V. Despré, A. Kuleff. Size effects in charge migration in alkyne chains. Theor. Chem. Accounts, 138, 110(2019).

    [10] A. S. Folorunso et al. Molecular modes of attosecond charge migration. Phys. Rev. Lett., 126, 133002(2021).

    [11] F. Mauger et al. Charge migration and attosecond solitons in conjugated organic molecules. Phys. Rev. Res., 4, 013073(2022).

    [12] F. Mauger et al. Nonlinear dynamics of attosecond charge migration in model carbon chains(2020).

    [13] W. Yu et al. Dynamical analysis of attosecond molecular modes. Phys. Rev. A, 107, 013101(2023).

    [14] M. Vacher et al. Electron dynamics upon ionization of polyatomic molecules: coupling to quantum nuclear motion and decoherence. Phys. Rev. Lett., 118, 083001(2017).

    [15] D. Jia, J. Manz, Y. Yang. De- and recoherence of charge migration in ionized iodoacetylene. J. Phys. Chem. Lett., 10, 4273-4277(2019).

    [16] V. Despré, N. V. Golubev, A. I. Kuleff. Charge migration in propiolic acid: a full quantum dynamical study. Phys. Rev. Lett., 121, 203002(2018).

    [17] F. Calegari et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science, 346, 336-339(2014).

    [18] F. Calegari et al. Charge migration induced by attosecond pulses in bio-relevant molecules. J. Phys. B, 49, 142001(2016).

    [19] M. Lara-Astiaso et al. Attosecond pump-probe spectroscopy of charge dynamics in tryptophan. J. Phys. Chem. Lett., 9, 4570-4577(2018).

    [20] E. P. Månsson et al. Real-time observation of a correlation-driven sub 3 fs charge migration in ionised adenine. Comm. Chem., 4, 73(2021).

    [21] D. T. Matselyukh et al. Decoherence and revival in attosecond charge migration driven by non-adiabatic dynamics. Nat. Phys., 18, 1206-1213(2022).

    [22] S. R. Leone et al. What will it take to observe processes in‘real time’?. Nat. Photonics, 8, 162-166(2014).

    [23] F. Lépine, M. Ivanov, M. Vrakking. Attosecond molecular dynamics: fact or fiction?. Nat. Photonics, 8, 195-204(2014).

    [24] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71, 1994-1997(1993).

    [25] M. Lewenstein et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A, 49, 2117-2132(1994).

    [26] P. M. Kraus et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science, 350, 790-795(2015).

    [27] L. He et al. Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy. Nat. Commun., 13, 4595(2022).

    [28] Y. Huang et al. Ultrafast hole deformation revealed by molecular attosecond interferometry. Ultrafast Sci., 2021, 9837107(2021).

    [29] M. Lein. Attosecond probing of vibrational dynamics with high-harmonic generation. Phys. Rev. Lett., 94, 053004(2005).

    [30] S. Baker et al. Probing proton dynamics in molecules on an attosecond time scale. Science, 312, 424-427(2006).

    [31] P. Lan et al. Attosecond probing of nuclear dynamics with trajectory-resolved high-harmonic spectroscopy. Phys. Rev. Lett., 119, 033201(2017).

    [32] D. R. Tuthill et al. Multidimensional molecular high-harmonic spectroscopy: a road map for charge migration studies. J. Mol. Spectrosc., 372, 111353(2020).

    [33] J. Itatani et al. Tomographic imaging of molecular orbitals. Nature, 432, 867-871(2004).

    [34] S. Haessler et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys., 6, 200-206(2010).

    [35] C. Vozzi et al. Generalized molecular orbital tomography. Nat. Phys., 7, 822-826(2011).

    [36] S. Sun et al. Iterative projection algorithm for retrieval of angle-resolved single-molecule dipoles from high-harmonic spectra. Phys. Rev. A, 107, 033105(2023).

    [37] O. Smirnova et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature, 460, 972-977(2009).

    [38] O. Smirnova et al. Strong-field control and spectroscopy of attosecond electron-hole dynamics in molecules. Proc. Natl. Acad. Sci. U. S. A., 106, 16556-16561(2009).

    [39] Z. Shu et al. Channel coupling dynamics of deep-lying orbitals in molecular high-harmonic generation. Phys. Rev. Lett., 128, 183202(2022).

    [40] A. T. Le et al. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A, 80, 013401(2009).

    [41] C. D. Lin et al. Strong-field rescattering physics—self-imaging of a molecule by its own electrons. J. Phys. B, 43, 122001(2010).

    [42] C. D. Lin et al. Attosecond and Strong-Field Physics: Principles and Applications(2018).

    [43] C. D. Lin et al. Elements of the quantitative rescattering theory. J. Phys. B, 51, 104001(2018).

    [44] Y. He et al. Measuring the rotational temperature and pump intensity in molecular alignment experiments via high harmonic generation. Opt. Express, 28, 21182-21191(2020).

    [45] K. Yoshii, G. Miyaji, K. Miyazaki. Retrieving angular distributions of high-order harmonic generation from a single molecule. Phys. Rev. Lett., 106, 013904(2011).

    [46] L. He et al. Real-time observation of molecular spinning with angular high-harmonic spectroscopy. Phys. Rev. Lett., 121, 163201(2018).

    [47] Y. He et al. Direct imaging of molecular rotation with high-order-harmonic generation. Phys. Rev. A, 99, 053419(2019).

    [48] H. T. Thai et al. Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: a simulation study in population pharmacokinetics. J. Pharmacokinet. Pharmacodyn., 41, 15-33(2014).

    [49] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133-A1138(1965).

    [50] E. Runge, E. Gross. Density-functional theory for time-dependent systems. Phys. Rev. Lett., 52, 997-1000(1984).

    [51] M. Marques et al. Octopus: a first-principles tool for excited electron-ion dynamics. Comput. Phys. Commun., 151, 60-78(2003).

    [52] J. P. Perdew, A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048-5079(1981).

    [53] C. Legrand, E. Suraud, P. G. Reinhard. Comparison of self-interaction-corrections for metal clusters. J. Phys. B, 35, 1115(2002).

    [54] B. D. Bruner et al. Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields. Faraday Discuss., 194, 369-405(2016).

    [55] L. He et al. Spectrally resolved spatiotemporal features of quantum paths in high-order-harmonic generation. Phys. Rev. A, 92, 043403(2015).

    [56] X. M. Tong, Z. X. Zhao, C. D. Lin. Theory of molecular tunneling ionization. Phys. Rev. A, 66, 033402(2002).

    [57] X. M. Tong, C. D. Lin. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B, 38, 2593(2005).

    [58] S. Zhao et al. Determination of structure parameters in strong-field tunneling ionization theory of molecules. Phys. Rev. A, 81, 033423(2010).

    Lixin He, Yanqing He, Siqi Sun, Esteban Goetz, Anh-Thu Le, Xiaosong Zhu, Pengfei Lan, Peixiang Lu, Chii-Dong Lin. Attosecond probing and control of charge migration in carbon-chain molecule[J]. Advanced Photonics, 2023, 5(5): 056001
    Download Citation