• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 4, 428 (2021)
Yuzhen ZHENG1、*, Bojie ZHU1, Biao WU1, Yongdan HUANG1, Jian CHEN1, Rong HUANG1, Junyi SUN1, Haolin JIA2, Jun GU2, Kanglin XIONG1、2, Jiagui FENG1、2, and Hui YANG1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.04.004 Cite this Article
    ZHENG Yuzhen, ZHU Bojie, WU Biao, HUANG Yongdan, CHEN Jian, HUANG Rong, SUN Junyi, JIA Haolin, GU Jun, XIONG Kanglin, FENG Jiagui, YANG Hui. Low loss superconducting coplanar waveguide resonator based on aluminum film[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 428 Copy Citation Text show less
    References

    [1] Kelly J S. Fault-tolerant Superconducting Qubits[D]. Santa Barbara: University of California Santa Barbara, 2015.

    [2] Barends R, Kelly J, Megrant A, et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits[J]. Physical Review Letters, 2013, 111(8): 080502.

    [3] Müller C, Cole J H, Lisenfeld J. Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits[J]. Reports on Progress in Physics, 2019, 82(12): 124501.

    [4] Calusine G, Melville A, Woods W, et al. Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators[J]. Applied Physics Letters, 2018, 112(6): 062601.

    [5] Gao J. The Physics of Superconducting Microwave Resonators[D]. California: California Institute of Technology Pasadena, 2008.

    [6] Wisbey D S, Gao J S, Vissers M R, et al. Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides[J]. Journal of Applied Physics, 2010, 108(9): 093918.

    [7] Martinis J M, Cooper K B, McDermott R, et al. Decoherence in Josephson qubits from dielectric loss[J]. Physical Review Letters, 2005, 95(21): 210503.

    [8] Shnirman A, Schn G, Martin I, et al. Low-and high-frequency noise from coherent two-level systems[J]. Physical Review Letters, 2005, 94(12): 127002.

    [9] McRae C R H, Wang H, Gao J, et al. Materials loss measurements using superconducting microwave resonators[J]. Review of Scientific Instruments, 2020, 91(9): 091101.

    [10] Zmuidzinas J. Superconducting microresonators: Physics and applications[J]. Annual Review of Condensed Matter Physics, 2012, 3(1): 169-214.

    [11] Gao J S, Daal M, Vayonakis A, et al. Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators[J]. Applied Physics Letters, 2008, 92(15): 152505.

    [12] Wenner J, Barends R, Bialczak R C, et al. Surface loss simulations of superconducting coplanar waveguide resonators[J]. Applied Physics Letters, 2011, 99(11): 113513.

    [13] Nersisyan A, Poletto S, Alidoust N, et al. Manufacturing low dissipation superconducting quantum processors[C]. IEEE International Electron Devices Meeting (IEDM), 2019.

    [14] Jiang Y, Kim Y H, Zhang S B, et al. Growing extremely thin bulklike metal film on a semiconductor surface: Monolayer Al(111) on Si(111)[J]. Applied Physics Letters, 2007, 91(18): 181902.

    [15] Chen W, Bennett D A, Patel V, et al. Substrate and process dependent losses in superconducting thin film resonators[J]. Superconductor Science and Technology, 2008, 21(7): 075013.

    [16] Richardson C K, Siwak N P, Hackley J, et al. Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators[J]. Superconductor Science and Technology, 2016, 29(6): 064003.

    [17] Mattis D C, Bardeen J. Theory of the anomalous skin effect in normal and superconducting metals[J]. Physical Review, 1958, 111(2): 412-417.

    [18] Tian Y, Yu H F, Deng H, et al. A cryogen-free dilution refrigerator based Josephson qubit measurement system[J]. Review of Scientific Instruments, 2012, 83(3): 033907.

    [19] Bruno A, de Lange G, Asaad S, et al. Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates[J]. Applied Physics Letters, 2015, 106(18): 182601.

    [20] Macha P, van der Ploeg S H W, Oelsner G, et al. Losses in coplanar waveguide resonators at millikelvin temperatures[J]. Applied Physics Letters, 2010, 96(6): 062503.

    [21] Megrant A, Neill C, Barends R, et al. Planar superconducting resonators with internal quality factors above one million[J]. Applied Physics Letters, 2012, 100(11): 113510.

    [22] Shalibo Y, Rofe Y, Shwa D, et al. Lifetime and coherence of two-level defects in a Josephson junction[J]. Physical Review Letters, 2010, 105(17): 177001.

    [23] Kumar P, Sendelbach S, Beck M A, et al. Origin and reduction of 1/f magnetic flux noise in superconducting devices[J]. Physical Review Applied, 2016, 6(4): 041001.

    ZHENG Yuzhen, ZHU Bojie, WU Biao, HUANG Yongdan, CHEN Jian, HUANG Rong, SUN Junyi, JIA Haolin, GU Jun, XIONG Kanglin, FENG Jiagui, YANG Hui. Low loss superconducting coplanar waveguide resonator based on aluminum film[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 428
    Download Citation