• Matter and Radiation at Extremes
  • Vol. 5, Issue 6, 064402 (2020)
Y. X. Geng1、*, D. Wu2, W. Yu3, Z. M. Sheng4、5, S. Fritzsche6, Q. Liao1, M. J. Wu1, X. H. Xu1, D. Y. Li1, W. J. Ma1, H. Y. Lu1, Y. Y. Zhao1, X. T. He1, J. E. Chen1, C. Lin1, and X. Q. Yan1
Author Affiliations
  • 1Key Laboratory of HEDP of the Ministry of Education, CAPT, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, 310058 Hangzhou, China
  • 3State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, 201800 Shanghai, China
  • 4SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
  • 5Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 6Helmholtz Institut-Jena and Friedrich-Schiller-University, D-07743 Jena, Germany
  • show less
    DOI: 10.1063/5.0014854 Cite this Article
    Y. X. Geng, D. Wu, W. Yu, Z. M. Sheng, S. Fritzsche, Q. Liao, M. J. Wu, X. H. Xu, D. Y. Li, W. J. Ma, H. Y. Lu, Y. Y. Zhao, X. T. He, J. E. Chen, C. Lin, X. Q. Yan. Proton beams from intense laser-solid interaction: Effects of the target materials[J]. Matter and Radiation at Extremes, 2020, 5(6): 064402 Copy Citation Text show less
    References

    [1] T. E. Cowan, A. B. Langdon, S. C. Wilks et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas, 8, 542(2001).

    [2] K. J. Bowers, B. J. Albright, L. Yin et al. Break-out afterburner ion acceleration in the longer laser pulse length regime. Phys. Rev. Lett., 107, 045003(2011).

    [3] F. Fiuza, S. Tochitsky, D. Haberberger et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys., 8, 95(2012).

    [4] A. S. Pirozhkov, H. Daido, M. Nishiuchi. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401(2012).

    [5] C. Wang, P. Zhang, X.-T. He. Ab initio simulations of dense helium plasmas. Phys. Rev. Lett., 106, 145002(2011).

    [6] C. K. Li, J. R. Rygg, F. H. Séguin et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. Phys. Rev. Lett., 100, 225001(2008).

    [7] M. H. Key, M. Roth, T. E. Cowan et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett., 86, 436(2001).

    [8] M. H. Key, R. A. Snavely, S. P. Hatchett et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945(2000).

    [9] T. Z. Esirkepov, K. Nishihara, S. V. Bulanov et al. Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett., 89, 175003(2002).

    [10] J. Fuchs, M. Borghesi, S. V. Bulanov et al. Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol., 49, 412(2006).

    [11] Y.-H. Cha, S. H. Park, K. Lee et al. Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Rev. E, 78, 056403(2008).

    [12] K. Lee, S. H. Park, J. Y. Lee et al. Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Plasmas, 18, 013101(2011).

    [13] M. Borghesi, M. Passoni, A. Macchi. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751(2013).

    [14] F. Pisani, A. Bernardinello, D. Batani et al. Experimental evidence of electric inhibition in fast electron penetration and of electric-field-limited fast electron transport in dense matter. Phys. Rev. E, 62, R5927(R)(2000).

    [15] P. Audebert, J. Fuchs, T. E. Cowan et al. Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. Phys. Rev. Lett., 91, 255002(2003).

    [16] P. Gibbon. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets. Phys. Rev. E, 72, 026411(2005).

    [17] R. E. W. Pfund, A. J. Kemp, J. Meyer-ter-Vehn. Modeling ultrafast laser-driven ionization dynamics with Monte Carlo collisional particle-in-cell simulations. Phys. Plasmas, 11, 5648(2004).

    [18] M. V. Ammosov, V. P. Krainov, N. B. Delone. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP, 64, 1191(1986).

    [19] K. Nanbu, S. Yonemura. Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle. J. Comput. Phys., 145, 639(1998).

    [20] A. J. Kemp, Y. Sentoku. Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents. J. Comput. Phys., 227, 6846(2008).

    [21] T. R. Preston, O. Ciricosta, S. M. Vinko et al. Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma. Nat. Commun., 6, 6397(2015).

    [22] S. M. Vinko, B. I. Cho, O. Ciricosta et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature, 482, 59(2012).

    [23] P. Leblanc, Y. Sentoku. Scaling of resistive guiding of laser-driven fast-electron currents in solid targets. Phys. Rev. E, 89, 023109(2014).

    [24] L. Romagnani, E. d’Humieres, Y. Sentoku et al. Dynamic control over mega-ampere electron currents in metals using ionization-driven resistive magnetic fields. Phys. Rev. Lett., 107, 135005(2011).

    [25] L. G. Huang, T. E. Cowan, T. Kluge. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses. Phys. Plasmas, 23, 063112(2016).

    [26] W. Yu, S. Fritzsche, X. T. He, D. Wu. High-order implicit particle-in-cell method for plasma simulations at solid densities. Phys. Rev. E, 100, 013207(2019).

    [27] D. Wu, S. Fritzsche, W. Yu, X. T. He. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations. Phys. Rev. E, 95, 023208(2017).

    [28] B. Qiao, D. Wu, C. McGuffey et al. The radiation reaction effects in the ultra-intense and ultra-short laser foil interaction regime. Phys. Plasmas, 21, 123118(2014).

    [29] W. Yu, X. T. He, S. Fritzsche, D. Wu. Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations. Phys. Rev. E, 95, 023207(2017).

    [30] X. T. He, W. Yu, S. Fritzsche, D. Wu. Particle-in-cell simulation method for macroscopic degenerate plasmas. Phys. Rev. E, 102, 033312(2020).

    [31] B. Mercier, J.-P. Rousseau, A. Jullien et al. Highly efficient nonlinear filter for femtosecond pulse contrast enhancement and pulse shortening. Opt. Lett., 33, 2353(2008).

    [32] Y.-R. Shou, Y.-X. Geng, et al. J Generating Proton beams exceeding 10 MeV using high contrast 60 TW. Chin. Phys. Lett., 35, 092901(2018).

    [33] F. Nürnberg, E. Brambrink, M. Schollmeier et al. Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instrum., 80, 033301(2009).

    [34] S. V. Bulanov, H. Daido, A. Yogo et al. Laser ion acceleration via control of the near-critical density target. Phys. Rev. E, 77, 016401(2008).

    [35] K. Matsukado, K. Kinoshita, T. Esirkepov et al. Energetic Protons from a Few-Micron Metallic Foil Evaporated by an Intense Laser Pulse. Phys. Rev. Lett., 91, 215001(2003).

    [36] D. Wu, W. Yu, S. Fritzsche, X. T. He. Particle-in-cell simulations of laser-plasma interactions at solid densities and relativistic intensities: The role of atomic processes. High Power Laser Sci. Eng., 6, e50(2018).

    [37] W. Yu, D. H. H. Hoffmann, Y. T. Zhao, D. Wu et al. Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials. Phys. Rev. E, 100, 013208(2019).

    [38] W. W. Chang, H. Xu, H. B. Zhuo et al. Parallel programming of 2(1/2) dimensional PIC under distributed memory parallel environments Chin. J. Comput. Phys., 19, 305(2002).

    [39] I. P. Tsygvintsev, P. Hadjisolomou, P. Sasorov et al. Preplasma effects on laser ion generation from thin foil targets. Phys. Plasmas, 27, 013107(2020).

    [40] B. S. Paradkar, S. I. Krasheninnikov, F. N. Beg. Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction. Phys. Plasmas, 19, 060703(2012).

    [41] A. Sorokovikova, A. V. Arefiev, C. McGuffey et al. Generation of superponderomotive electrons in multipicosecond interactions of kilojoule laser beams with solid-density plasmas. Phys. Rev. Lett., 116, 155001(2016).

    [42] D. Wu, W. Yu, S. X. Luan, S. I. Krasheninnikov. Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser-matter interaction at relativistic intensities. Nucl. Fusion, 57, 016007(2017).

    [43] K. Mima, A. Yogo, N. Iwata et al. Boosting laser-ion acceleration with multi-picosecond pulses. Sci. Rep., 7, 42451(2017).

    Y. X. Geng, D. Wu, W. Yu, Z. M. Sheng, S. Fritzsche, Q. Liao, M. J. Wu, X. H. Xu, D. Y. Li, W. J. Ma, H. Y. Lu, Y. Y. Zhao, X. T. He, J. E. Chen, C. Lin, X. Q. Yan. Proton beams from intense laser-solid interaction: Effects of the target materials[J]. Matter and Radiation at Extremes, 2020, 5(6): 064402
    Download Citation