• Acta Optica Sinica
  • Vol. 41, Issue 9, 0923001 (2021)
Liangliang Wang1、*, Jiashun Zhang1, Junming An1, Shaoyang Li1, Yanzhang Hu2, and Xiasen Chang2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Key Laboratory of Optoelectronic Circuit and Integration, Henan Shijia Photons Technology Co., Ltd., Hebi, Henan 458030, China
  • show less
    DOI: 10.3788/AOS202141.0923001 Cite this Article Set citation alerts
    Liangliang Wang, Jiashun Zhang, Junming An, Shaoyang Li, Yanzhang Hu, Xiasen Chang. Compact and Low Loss Coarse Wavelength Division Demultiplexer Chip[J]. Acta Optica Sinica, 2021, 41(9): 0923001 Copy Citation Text show less
    References

    [1] An J M. Research for silica on silicon arrayed waveguide grating Beijing: Institute of Semiconductors,[D]. Chinese Academy of Sciences(2004).

    [2] Arima R, Hatano T, Hiramoto K et al. Demonstration of world-first 112 Gbit/s 1310 nm LAN-WDM optical transceiver for 100 GbE and 100 GbE over OTN applications. [C]∥Optical Fiber Communication Conference & Exposition, March 21-25, 2010, San Diego, California, United States. Washington, D.C.: OSA, PDPD3(2010).

    [3] Kang S K, Lee J K, Lee J C et al. A compact 4×10-Gb/s CWDM ROSA module for 40G Ethernet optical transceiver. [C]∥2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), June 1-4, 2010, Las Vegas, NV, USA. New York: IEEE, 2001-2005(2010).

    [4] Gu Y, Oguma M, Ito M et al. Compact ROSA for 100-Gb/s (4×25 Gb/s) Ethernet with a PLC-based AWG demultiplexer. [C]∥2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), March 17-21, 2013, Anaheim, CA, USA. New York: IEEE, 1-3(2013).

    [5] Gu Y, Oguma M, Yoshimatsu T et al. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s Ethernet[J]. Journal of Lightwave Technology, 33, 3286-3292(2015). http://dx.doi.org/10.1109/jlt.2015.2427367

    [6] Gu Y, Nakanishi Y, Yoshimatsu T et al. Compact 8-wavelength receiver optical sub-assembly with a low-loss AWG demultiplexer for 400-gigabit datacom[C]∥2015 European Conference on Optical Communication (ECOC), September 27-October 1, 2015, Valencia, Spain., 1-3(2015).

    [7] Ferrari C, Bolle C, Cappuzzo M A et al. Compact hybrid-integrated 400 Gbit/s WDM receiver for short-reach optical interconnect in datacenters[C]∥2014 The European Conference on Optical Communication (ECOC), September 21-25, 2014, Cannes, France., 1-3(2014).

    [8] Li C Y, An J M, Wang J Q et al. The 8×10 GHz receiver optical subassembly based on silica hybrid integration technology for data center interconnection[J]. Chinese Physics Letters, 34, 104202(2017).

    [9] Li C Y, An J M, Zhang J S et al. 4×20 GHz silica-based AWG hybrid integrated receiver optical sub-assemblies[J]. Chinese Optics Letters, 16, 060603(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJeedfa381d34b396c

    [10] Smit M K. New focusing and dispersive planar component based on an optical phased array[J]. Electronics Letters, 24, 385-386(1988).

    [11] Kamei S, Ishii M, Itoh M et al. 64×64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module[J]. Electronics Letters, 39, 83-84(2003).

    [12] Hida Y, Hibino Y, Kitoh T et al. 400-channel arrayed-waveguide grating with 25 GHz spacing using 1.5%- waveguides on 6-inch Si wafer[J]. Electronics Letters, 37, 576-577(2001).

    [13] Miyagawa Y, Yamamoto T, Masuda H et al. Over-10000-channel 2.5 GHz-spaced ultra-dense WDM light source[J]. Electronics Letters, 42, 655-657(2006).

    [14] Dai D X, Wang Z, Bauters J F et al. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides[J]. Optics Express, 19, 14130-14136(2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-15-14130

    [15] Chen X L, Hu J, Zhang Z Q et al. Research progress in silicon photonic arrayed waveguide grating devices[J]. Laser & Optoelectronics Progress, 55, 120009(2018).

    [16] Wang S X, Lang T T, Song G Y et al. SiON-based cyclic arrayed waveguide grating routers with improved loss uniformity[J]. Acta Optica Sinica, 39, 1123001(2019).

    [17] Sun J, Wu Y D, Wu W F et al. Optimization of polarization-dependent loss of arrayed waveguide grating demultiplexer[J]. Chinese Journal of Lasers, 47, 0106003(2020).

    [18] Zhang Z Y, Wang Y, Tsang H K et al. Ultracompact 40-channel arrayed waveguide grating on silicon nitride platform at 860 nm[J]. IEEE Journal of Quantum Electronics, 56, 1-8(2020). http://ieeexplore.ieee.org/document/8889748/references

    [19] Liu Y J, Li Z Y, Li D et al. Thermo-optic tunable silicon arrayed waveguide grating at 2-μm wavelength band[J]. IEEE Photonics Journal, 12, 1-8(2020). http://ieeexplore.ieee.org/document/9115301/

    [20] Han Q, Menard M, Shi W et al. Silicon nitride arrayed waveguide grating with a waveguide superlattice. [C]∥Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, D.C., USA. Washington, D.C.: OSA, AW3M, 6(2020).

    [21] Wang Z J, Shang J T. 3D composite glass-silicon interposer integrated with polymer arrayed waveguide grating. [C]∥2020 IEEE 70th Electronic Components and Technology Conference (ECTC), June 3-30, 2020, Orlando, FL, USA. New York: IEEE, 1844-1848(2020).

    [22] Liu Q, Ma W D, Wang W M et al. The research of coarse wavelength division multiplexer based on array waveguide grating with broadened pass-band and low crosstalk[J]. Acta Optica Sinica, 24, 1265-1268(2004).

    [23] Li C Y, An J M, Zhang J S et al. Design and fabrication of O band 8 channel flat-top arrayed waveguide grating based on silica on silicon[J]. Acta Photonica Sinica, 46, 21-29(2017).

    Liangliang Wang, Jiashun Zhang, Junming An, Shaoyang Li, Yanzhang Hu, Xiasen Chang. Compact and Low Loss Coarse Wavelength Division Demultiplexer Chip[J]. Acta Optica Sinica, 2021, 41(9): 0923001
    Download Citation