• Microelectronics
  • Vol. 53, Issue 4, 716 (2023)
ZHAO Liqiang1, XIANG Xingyan1, WANG Gang2, LI Wei2, and LIU Jiangang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220291 Cite this Article
    ZHAO Liqiang, XIANG Xingyan, WANG Gang, LI Wei, LIU Jiangang. Research Progress of Resistive MEMS Semiconductor Gas Sensors with Low Power[J]. Microelectronics, 2023, 53(4): 716 Copy Citation Text show less
    References

    [1] MUHAMMAD I A A, MD N H, MARIATUL R A F, et al. MEMS gas sensors: a review [J]. IEEE Sensors Journal, 2021, 21(17): 18381-18397.

    [2] LI T, XU L, LUO L, et al. Wafer-level fabricated high-performance micronano gas sensor [C] // 2017 Pan Pacific Microelectronics Symposium. Kauai, HI, USA. 2017.

    [3] ANDREA G, DAVID N, ELIA S, et al. Optimization of a low-power chemoresistive gas sensor: predictive thermal modelling and mechanical failure analysis [J]. Sensors (Switzerland), 2021, 21(3): 1-19.

    [4] XU X J, FAN H T, LIU Y T, et al. Au-loaded In2O3 nanofibers-based ethanol micro gas sensor with low power consumption [J]. Sensors and Actuators B: Chemical, 2011, 160(1): 713-719.

    [5] LIU H T, ZHANG L, KING H H L, et al. Microhotplates for metal oxide semiconductor gas sensor applications-towards the CMOS-MEMS monolithic approach [J]. Micromachines, 2018, 9(11): 557-561.

    [6] BAGOLINI A, GAIARDO A, CRIVELLARI M, et al. Development of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation [J]. Sensors and Actuators B: Chemical, 2019, 292: 225-232.

    [7] BARBARA U W, TIMOTHY A V, MOHAMED F C, et al. Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment [J]. Sensors and Actuators B, 2017, 239: 1051-1059.

    [8] ABDULLAH S A, MOHD H K, ABDELAZIZ Y A, et al. Fabrication and characterization of the micro-heater and temperature sensor for PolyMUMPs-based MEMS gas sensor [J]. Micromachines, 2022, 13(4): 525-529.

    [9] XIE D C, LIU R C, YANG Y J, et al. From ceramic tube to microcantilever: a new strategy for low power, fast heating and high integrated metal oxide semiconductor gas sensor [C] // International Conference on Manipulation, Automation, and Robotics at Small Scales. Toronto, ON, Canada. 2020.

    [10] KANG J G, PARK J S, LEE H J. Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHO [J]. Sensors and Actuators B, 2017, 248: 1011-1016.

    [11] AKASAKA S, KANNO I. Limiting current-type MEMS oxygen gas sensor integrated with micro-hotplate [C] // Proceedings of IEEE Sensors. Sydney, Australia. 2021.

    [12] LEE Y C, CHENG S W, LIN Y C, et al. Monolithic integrated CMOS-MEMS MOS type gas sensor and novel heater for sensitivity and power consumption enhancement [C] // 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII. Berlin, Germany. 2019: 1389-1392.

    [14] KWAK S M, SHIM Y S, YOO Y K, et al. MEMS-based gas sensor using PdO-decorated TiO2 thin film for highly sensitive and selective H2 detection with low power consumption [J]. Electronic Materials Letters, 2018, 14(3): 306-313.

    [15] KIM I, SEO K W. Ultra-thin filmed SnO2 gas sensor with a low-power micromachined hotplate for selective dual gas detection of carbon monoxide and methane [C] // Proceedings of the International Conference on Sensing Technology. Sydney, Australia. 2017.

    [16] SRINIVASAN P, EZHILAN M, KULANDAISAMY A J, et al. Room temperature chemiresistive gas sensors: challenges and strategies-a mini review [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(17): 15825-15847.

    [17] YUN J H, AHN J H, CHOI Y K, et al. Ultra-low power hydrogen sensor by suspended and palladium coated silicon nanowire [C] // 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). Las Vegas, NV, USA. 2017.

    [18] MOHIB U, BAI X, CHEN J K, et al. Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612: 125972.

    [19] WANG X Y, MARIKUTSA A, RUMYANTSEVA M, et al. P-n transition-enhanced sensing properties of rGO-SnO2 heterojunction to NO2 at room temperature [J]. IEEE Sensors Journal, 2022, 20(9): 4562-4570.

    [20] YAO L J, TIAN X, CUI X X, et al. Partially oxidized Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(23): 27837-27848.

    [21] ISOLDE S, NICOLAE B, MICHAEL B, et al. Micromachined metal oxide gas sensors: opportunities to improve sensor performance [J]. Sensors and Actuators, B: Chemical, 2001, 73(1): 1-26.

    [22] SOLZBACHER F, IMAWAN C, STEFFES H, et al. A modular system of SiC-based microhotplates for the application in metal oxide gas sensors [J].Sensors and Actuators B: Chemical, 2000, 64(1): 95-101

    [23] GUAN D B, YANG F, LIU Q, et al. A novel prototype of low power consumption MEMS sensors for hydrogen detection [C] // 2016 IEEE Sensors. Orlando, FL, USA. 2016.

    [24] CHEN Y, XU P C, ZHANG P P, et al. Long-term stability improvement of micro-hotplate methane sensor product [C] // 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). Vancouver, BC, Canada. 2020:1300-1303.

    [25] XIE D C, CHEN D L, PENG S F, et al. A low power cantilever-based metal oxide semiconductor gas sensor [J]. IEEE Electron Device LetteRS, 2019, 40(7): 1178-1181.

    [26] MARIA E C, ROBERTO M, SALVATORE C, et al. A high stability and uniformity W micro hot plate [J]. Sensors and Actuators A: Physical, 2018, 279: 617-623.

    [27] DONG L X, XU Z R, XUAN W P, et al. A characterization of the performance of gas sensor based on heater in different gas flow rate environments [J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6281-6290.

    [28] HONG Y, HONG S, JANG D, et al. A Si FET-type gas sensor with pulse-driven localized microheater for low power consumption [C] // 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 2018: 288-291.

    [29] JUNG G, HONG S, JEONG Y, et al. Highly selective and low-power carbon monoxide gas sensor based on the chain reaction of oxygen and carbon monoxide to WO3 [J]. ACS Applied Materials and Interfaces, 2022, 14(15): 17950-17958.

    [32] LIU X W, LI L L, ANDREW J M. Thermally controlled electrochemical CMOS microsystem for protein array biosensors [J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(1): 25-34.

    [33] FIGARO E. Gas detection device and gas detection method [P]. US: US201916973063A, 2019-04-24.

    [34] PRESMANES L, THIMONT Y, CHAPELLE A, et al. Highly sensitive sputtered ZnO: Ga thin films integrated by a simple stencil mask process on microsensor platforms for sub-ppm acetaldehyde detection [J]. Sensors (Switzerland), 2017, 17(5): 1055.

    [35] WU J R, YU J, LIANG J M, et al. Driver circuit system for temperature control of micro-hotplates: measurement and strategy [C] // 2015 IEEE 11th International Conference on ASIC (ASICON). Chengdu, China. 2015.

    [37] RAFAEL P, YANN D, THOMAS W, et al. An ultra-Low-power read-out circuit for interfacing novel gas sensors matrices [J]. IEEE Sensors Journal, 2022, 22(10): 9521-9533.

    [38] LI C L, CHEN M Q, PENG S F, et al. A high linearity detection circuit with constant detection voltage for resistive gas sensor [C] // 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chengdu, China. 2019: 1051-1058.

    [39] YANG J G, LI X W, DING Q T, et al. A high reliability 500 μW resistance-to-digital interface circuit for SnO2 gas sensor IoT applications [C] // 2019 IEEE 13th International Conference on ASIC (ASICON). Chongqing, China. 2019.

    ZHAO Liqiang, XIANG Xingyan, WANG Gang, LI Wei, LIU Jiangang. Research Progress of Resistive MEMS Semiconductor Gas Sensors with Low Power[J]. Microelectronics, 2023, 53(4): 716
    Download Citation