• Laser & Optoelectronics Progress
  • Vol. 54, Issue 7, 72501 (2017)
Xu Hailong* and Zhang Jiancheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.072501 Cite this Article Set citation alerts
    Xu Hailong, Zhang Jiancheng. Energy Band Structure Analysis of Lossy Metallic Photonic Crystals Based on Interfacial-Operator-Homotopy Approach[J]. Laser & Optoelectronics Progress, 2017, 54(7): 72501 Copy Citation Text show less
    References

    [1] Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5): 874-881.

    [2] Pendry J B, Martín-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-848.

    [3] Kitson S C, Barnes W L, Sambles J R. Full photonic band gap for surface modes in the visible[J]. Physical Review Letters, 1996, 77(13): 2670-2673.

    [4] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    [5] Boriskina S V, Ghasemi H, Chen G. Plasmonic materials for energy: From physics to applications[J]. Materials Today, 2013, 16(10): 379-390.

    [6] Schuller J A, Barnard E S, Cai W, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204.

    [7] Yan B, Boriskina S V, Reinhard B M. Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing[J]. Journal of Physical Chemistry C, 2011, 115(50): 24437-24453.

    [8] Mokkapati S, Beck F J, Polman A, et al. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells[J]. Applied Physics Letters, 2009, 95(5): 053115.

    [9] Laroche M, Carminati R, Greffet J J. Near-field thermophotovoltaic energy conversion[J]. Journal of Applied Physics, 2006, 100(6): 063704.

    [10] Gopinath A, Boriskina, et al. Enhancement of the 1.54 μm Er3+ emission from quasiperiodic plasmonic arrays[J]. Applied Physics Letters, 2010, 96(7): 071113.

    [11] Mubeen S, Hernandezsosa G, Moses D, et al. Plasmonic photosensitization of a wide band gap semiconductor: Converting plasmons to charge carriers[J]. Nano Letters, 2011, 11(12): 5548-5552.

    [12] Mukherjee S, Libisch F, Neumann O, et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au[J]. Nano Letters, 2013, 13(1): 240-247.

    [13] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

    [14] Shi Zhendong, Zhao Haifa, Liu Jianlong, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.

    [15] Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.

    [16] Wei Lai, Li Fang, Zhou Jianxin. Design of surface plasmon polariton nano-laser[J]. Acta Photonica Sinica, 2016, 45(10): 1014004.

    [17] Chang C C, Chern R L, Chang C C, et al. Interfacial operator approach to computing modes of surface plasmon polaritons for periodic structures[J]. Physical Review B, 2005, 20(20): 205112.

    [18] Chang C C, Shu Y C, Chern I L. Solving guided wave modes in plasmonic crystals[J]. Physical Reviews B, 2008, 78(3): 035133.

    [19] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes[M]. 3rd Edition, New York: Cambridge University Press, 2007: 577-599.

    [20] Han V D L, Tip A, Moroz A. Band structure of absorptive two-dimensional photonic crystals[J]. Journal of the Optical Society of America B, 2003, 20(6): 1334-1341.

    Xu Hailong, Zhang Jiancheng. Energy Band Structure Analysis of Lossy Metallic Photonic Crystals Based on Interfacial-Operator-Homotopy Approach[J]. Laser & Optoelectronics Progress, 2017, 54(7): 72501
    Download Citation