• Acta Optica Sinica
  • Vol. 40, Issue 18, 1828002 (2020)
Debin Wang1、2, Jin Wu1、2、*, Tong Wu1、2, and Jiayi Ke1、2
Author Affiliations
  • 1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202040.1828002 Cite this Article Set citation alerts
    Debin Wang, Jin Wu, Tong Wu, Jiayi Ke. Theoretical Model on Geosynchronous Orbit Object Imaging with Space-Borne Synthetic Aperture Ladar[J]. Acta Optica Sinica, 2020, 40(18): 1828002 Copy Citation Text show less
    References

    [1] Bashkansky M, Lucke R L, Funk E E et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 27, 1983-1985(2002).

    [2] Beck S M, Buck J, Buell W F et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 44, 7621-7629(2005).

    [3] Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 20, 24237-24246(2012).

    [4] Turbide S, Marchese L, Bergeron A et al. Synthetic aperture ladar based on a MOPAW laser[J]. Proceedings of SPIE, 10005, 1000502(2016).

    [5] Wu J, Zhao Z L, Wu S D et al. High resolution synthetic aperture ladar imaging at 12.9 m distance[J]. Acta Optica Sinica, 35, 1228002(2015).

    [6] Wu S D, Huang J Y, Zhao Z L et al. Experimental demonstration of spotlight mode synthetic aperture ladar[J]. Acta Optica Sinica, 36, 0628001(2016).

    [7] Li G Z, Wang R, Wang P S et al. Synthetic aperture LADAR at 1550 nm: system demonstration, imaging processing and experimental result[J]. Proceedings of SPIE, 10155, 101553G(2016).

    [8] Wang N, Wang R, Li G Z et al. Experiment of inverse synthetic aperture ladar at 1.1 km[J]. Proceedings of SPIE, 10155, 101551G(2016).

    [9] Krause B W, Buck J, Ryan C et al. Synthetic aperture ladar flight demonstration. [C]∥CLEO: Applications and Technology 2011, May 1-6, 2011, Baltimore, Maryland. Washington, D. C. : OSA, PDPB7(2011).

    [10] Li G Z, Wang N, Wang R et al. Imaging method for airborne SAL data[J]. Electronics Letters, 53, 351-353(2017).

    [11] Lu Z Y, Zhou Y, Sun J F et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chinese Journal of Lasers, 44, 0110001(2017).

    [12] Li D Y, Wu J, Wan L et al. Elementary imaging theory on space-borne synthetic aperture ladar[J]. Acta Optica Sinica, 39, 0728002(2019).

    [13] Li J M, Hu Y H, Wang E H et al. Imaging of satellite-to-satellite synthetic aperture lidar[J]. Infrared and Laser Engineering, 40, 1668-1672(2011).

    [14] Ruan H, Wu Y H, Zhang S X. Geostationary orbital object imaging based on spaceborne inverse synthetic aperture ladar[J]. Infrared and Laser Engineering, 42, 1611-1616(2013).

    [15] Li D J, Du J B, Ma M et al. System analysis of spaceborne synthetic aperture ladar[J]. Infrared and Laser Engineering, 45, 1130002(2016).

    [16] Hu X, Li D J, Fu H C et al. System analysis of ground-based inverse synthetic aperture lidar for geosynchronous orbit object imaging[J]. Acta Photonica Sinica, 47, 0601003(2018).

    [17] Hu X, Li D J. Space-based synthetic aperture lidar system with 10 m diffractive aperture[J]. Chinese Journal of Lasers, 45, 1210002(2018).

    Debin Wang, Jin Wu, Tong Wu, Jiayi Ke. Theoretical Model on Geosynchronous Orbit Object Imaging with Space-Borne Synthetic Aperture Ladar[J]. Acta Optica Sinica, 2020, 40(18): 1828002
    Download Citation