• Photonics Research
  • Vol. 10, Issue 2, 509 (2022)
Xiaohan Wang1、†, Kunpeng Jia1、3、†,*, Mengwen Chen1, Shanshan Cheng1, Xin Ni1, Jian Guo1, Yihao Li1, Huaying Liu1, Liyun Hao1, Jian Ning1, Gang Zhao1, Xinjie Lv1, Shu-Wei Huang2, Zhenda Xie1、4、*, and Shi-Ning Zhu1
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 2Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
  • 3e-mail: jiakunpeng@nju.edu.cn
  • 4e-mail: xiezhenda@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.432076 Cite this Article Set citation alerts
    Xiaohan Wang, Kunpeng Jia, Mengwen Chen, Shanshan Cheng, Xin Ni, Jian Guo, Yihao Li, Huaying Liu, Liyun Hao, Jian Ning, Gang Zhao, Xinjie Lv, Shu-Wei Huang, Zhenda Xie, Shi-Ning Zhu. 2 μm optical frequency comb generation via optical parametric oscillation from a lithium niobate optical superlattice box resonator[J]. Photonics Research, 2022, 10(2): 509 Copy Citation Text show less
    References

    [1] J. A. Giordmaine, R. C. Miller. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett., 14, 973-976(1965).

    [2] S. E. Harris. Tunable optical parametric oscillators. Proc. IEEE, 57, 2096-2113(1969).

    [3] S. Brosnan, R. Byer. Optical parametric oscillator threshold and linewidth studies. IEEE J. Quantum Electron., 15, 415-431(1979).

    [4] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer. 93% pump depletion, 3.5  W continuous-wave, singly resonant optical parametric oscillator. Opt. Lett., 21, 1336-1338(1996).

    [5] B. Hardy, A. Berrou, S. Guilbaud, M. Raybaut, A. Godard, M. Lefebvre. Compact, single-frequency, doubly resonant optical parametric oscillator pumped in an achromatic phase-adapted double-pass geometry. Opt. Lett., 36, 678-680(2011).

    [6] B. Scherrer, I. Ribet, A. Godard, E. Rosencher, M. Lefebvre. Dual-cavity doubly resonant optical parametric oscillators: demonstration of pulsed single-mode operation. J. Opt. Soc. Am. B, 17, 1716-1729(2000).

    [7] M. Lazoul, A. Boudrioua, S. L. Simohamed, A. Fischer, L. H. Peng. Experimental study of multiwavelength parametric generation in a two-dimensional periodically poled lithium tantalate crystal. Opt. Lett., 38, 3892-3894(2013).

    [8] M. Lazoul, A. Boudrioua, L.-M. Simohamed, L.-H. Peng. Multi-resonant optical parametric oscillator based on 2D-PPLT nonlinear photonic crystal. Opt. Lett., 40, 1861-1864(2015).

    [9] N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura. Efficient optical parametric oscillation based on periodically poled 1.0  mol% MgO-doped stoichiometric LiTaO3. Appl. Phys. Lett., 85, 5134-5136(2004).

    [10] N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, A. Shiratori. Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation. Appl. Phys. Lett., 84, 1662-1664(2004).

    [11] C. R. Phillips, J. S. Pelc, M. M. Fejer. Continuous wave monolithic quasi-phase-matched optical parametric oscillator in periodically poled lithium niobate. Opt. Lett., 36, 2973-2975(2011).

    [12] C. Langrock, M. M. Fejer. Fiber-feedback continuous-wave and synchronously-pumped singly-resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides. Opt. Lett., 32, 2263-2265(2007).

    [13] G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, W. Sohler. Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides. Proc. SPIE, 4277, 144-160(2001).

    [14] S.-Y. Tu, A. H. Kung, Z. D. Gao, S. N. Zhu. Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region. Opt. Lett., 30, 2451-2453(2005).

    [15] Z. D. Xie, X. J. Lv, Y. H. Liu, W. Ling, Z. L. Wang, Y. X. Fan, S. N. Zhu. Cavity phase matching via an optical parametric oscillator consisting of a dielectric nonlinear crystal sheet. Phys. Rev. Lett., 106, 083901(2011).

    [16] M. M. J. W. van Herpen, S. T. L. Hekkert, S. E. Bisson, F. J. M. Harren. Wide single-mode tuning of a 3.0–3.8  μm, 700  mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate. Opt. Lett., 27, 640-642(2002).

    [17] P. Gross, M. E. Klein, T. Walde, K. J. Boller, M. Auerbach, P. Wessels, C. Fallnich. Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator. Opt. Lett., 27, 418-420(2002).

    [18] M. E. Klein, P. Gross, K. J. Boller, M. Auerbach, P. Wessels, C. Fallnich. Rapidly tunable continuous wave optical parametric oscillator pumped by a fiber laser. Opt. Lett., 28, 920-922(2003).

    [19] I. Lindsay, B. Adhimoolam, P. Gross, M. Klein, K.-J. Boller. 110  GHz rapid, continuous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser. Opt. Express, 13, 1234-1239(2005).

    [20] C. S. Werner, K. Buse, I. Breunig. Continuous-wave whispering gallery optical parametric oscillator for high-resolution spectroscopy. Opt. Lett., 40, 772-775(2015).

    [21] A. W. Bruch, X. Liu, J. B. Surya, C.-L. Zou, H. X. Tang. On-chip χ(2) microring optical parametric oscillator. Optica, 6, 1361-1366(2019).

    [22] J. U. Furst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, G. Leuchs. Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett., 105, 263904(2010).

    [23] Q. Mo, S. Li, Y. Liu, X. Jiang, G. Zhao, Z. Xie, X. Lv, S. Zhu. Widely tunable optical parametric oscillator in periodically poled congruently grown lithium tantalite whispering gallery mode resonators. Chin. Opt. Lett., 14, 091902(2016).

    [24] S. N. Zhu, Y. Y. Zhu, N. B. Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 278, 843-846(1997).

    [25] Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, M. H. Chou. Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate. Opt. Lett., 27, 2191-2193(2002).

    [26] T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, I. Breunig. Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett., 106, 143903(2011).

    [27] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [28] S. T. Cundiff, J. Ye. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys., 75, 325-342(2003).

    [29] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [30] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [31] V. Ulvila, C. Phillips, L. Halonen, M. Vainio. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities. Opt. Lett., 38, 4281-4284(2013).

    [32] V. Ulvila, C. Phillips, L. Halonen, M. Vainio. High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator. Opt. Express, 22, 10535-10543(2014).

    [33] A. W. Bruch, X. Liu, Z. Gong, J. B. Surya, M. Li, C. L. Zou, H. X. Tang. Pockels soliton microcomb. Nat. Photonics, 15, 21-27(2021).

    [34] B. M. Notaroš. Conceptual Electromagnetics(2017).

    [35] S. M. Spillance, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [36] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [37] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).

    [38] M. Ebrahimzadeh, M. H. Dunn. Optical Parametric Oscillators in Handbook of Optics(2001).

    [39] S. Mosca, M. Parisi, I. Ricciardi, F. Leo, T. Hansson, M. Erkintalo, P. Maddaloni, P. De Natale, S. Wabnitz, M. De Rosa. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys. Rev. Lett., 121, 093903(2018).

    [40] M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, M. Vainio. Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators. Phys. Rev. A, 98, 053850(2018).

    [41] O. Gayer, Z. Sacks, E. Galun, A. Arie. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B, 91, 343-348(2008).

    [42] A. V. Smith, R. J. Gehr, M. S. Bowers. Numerical models of broad-bandwidth nanosecond optical parametric oscillators. J. Opt. Soc. Am. B, 16, 609-619(1999).

    [43] T. Hansson, P. Parra-Rivas, M. Bernard, F. Leo, L. Gelens, S. Wabnitz. Quadratic soliton combs in doubly resonant second-harmonic generation. Opt. Lett., 43, 6033-6036(2018).

    [44] M. Nie, S.-W. Huang. Quadratic soliton mode-locked degenerate optical parametric oscillator. Opt. Lett., 45, 2311-2314(2020).

    Xiaohan Wang, Kunpeng Jia, Mengwen Chen, Shanshan Cheng, Xin Ni, Jian Guo, Yihao Li, Huaying Liu, Liyun Hao, Jian Ning, Gang Zhao, Xinjie Lv, Shu-Wei Huang, Zhenda Xie, Shi-Ning Zhu. 2 μm optical frequency comb generation via optical parametric oscillation from a lithium niobate optical superlattice box resonator[J]. Photonics Research, 2022, 10(2): 509
    Download Citation