• Photonics Research
  • Vol. 10, Issue 5, 1308 (2022)
Jing-Zhi Huang1、2、†, Zi-Tao Ji3、†, Jia-Jian Chen1、2, Wen-Qi Wei4, Jia-Le Qin1、2, Zi-Hao Wang1、2、4、6、*, Zhi-Yuan Li3, Ting Wang1、2、4、7、*, Xi Xiao5, and Jian-Jun Zhang1、2、4、8、*
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
  • 4Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 5National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
  • 6e-mail: wangzihao@iphy.ac.cn
  • 7e-mail: wangting@iphy.ac.cn
  • 8e-mail: jjzhang@iphy.ac.cn
  • show less
    DOI: 10.1364/PRJ.446349 Cite this Article Set citation alerts
    Jing-Zhi Huang, Zi-Tao Ji, Jia-Jian Chen, Wen-Qi Wei, Jia-Le Qin, Zi-Hao Wang, Zhi-Yuan Li, Ting Wang, Xi Xiao, Jian-Jun Zhang. Ultra-broadband flat-top quantum dot comb lasers[J]. Photonics Research, 2022, 10(5): 1308 Copy Citation Text show less
    References

    [1] R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett., 35, 3234-3236(2010).

    [2] M. Y. Xu, M. B. He, Y. T. Zhu, S. Y. Yu, X. L. Cai. Flat optical frequency comb generator based on integrated lithium niobate modulators. J. Lightwave Technol., 40, 339-345(2021).

    [3] S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, J. Chen. Optical frequency comb and Nyquist pulse generation with integrated silicon modulators. IEEE J. Sel. Top. Quantum Electron., 26, 8300208(2019).

    [4] P. Delhaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [5] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [6] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [7] W. L. Weng, A. Kaszubowska-Anandarajah, J. J. He, P. D. Lakshmijayasimha, E. Lucas, J. Q. Liu, P. M. Anandarajah, T. J. Kippenberg. Gain-switched semiconductor laser driven soliton microcombs. Nat. Commun., 12, 1425(2021).

    [8] R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, P. Anandarajah. 40 nm wavelength tunable gain-switched optical comb source. Opt. Express, 19, B415-B420(2011).

    [9] E. U. Rafailov, M. A. Cataluna, W. Sibbett. Mode-locked quantum-dot lasers. Nat. Photonics, 1, 395-401(2007).

    [10] A. Aboketaf, A. Elshaari, S. Preble. Optical time division multiplexer on silicon chip. Opt. Express, 18, 13529-13535(2010).

    [11] D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenloewe, P. Dong, H. Hu. Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator. J. Lightwave Technol., 38, 4677-4682(2020).

    [12] Z. Lu, J. Liu, S. Raymond, P. Poole, P. Barrios, D. Poitras. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt. Express, 16, 10835-10840(2008).

    [13] J. Liu, Z. Lu, S. Raymond, P. Poole, P. Barrios, D. Poitras. Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser. Opt. Lett., 33, 1702-1704(2008).

    [14] Z. G. Lu, J. R. Liu, C. Y. Song, J. Weber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, M. O’Sullivan. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt. Express, 26, 2160-2167(2018).

    [15] X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, K. J. Malloy. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett., 78, 2825-2827(2001).

    [16] B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. Beausoleil, F. Grillot. Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection. Opt. Lett., 44, 5755-5758(2019).

    [17] J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photon. Res., 7, 1222-1228(2019).

    [18] J. J. Chen, Z. H. Wang, W. Q. Wei, T. Wang, J. J. Zhang. Sole excited-state InAs quantum dot laser on silicon with strong feedback resistance. Front. Mater., 8, 163(2021).

    [19] J. Kwoen, B. Jang, K. Watanabe, Y. Arakawa. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express, 27, 2681-2688(2019).

    [20] J. C. Norman, D. Jung, Z. Y. Zhang, Y. T. Wang, S. T. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron., 55, 2000511(2019).

    [21] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [22] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett., 104, 041104(2014).

    [23] Z. H. Wang, W. Q. Wei, Q. Feng, T. Wang, J. J. Zhang. InAs/GaAs quantum dot single-section mode-locked lasers on Si (001) with optical self-injection feedback. Opt. Express, 29, 674-683(2021).

    [24] W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, J. J. Zhang. Phosphorus-free 1.5 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt. Lett., 45, 2042-2045(2020).

    [25] W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, J. J. Zhang. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt. Express, 28, 26555-26563(2020).

    [26] Q. Feng, W. Q. Wei, B. Zhang, H. L. Wang, J. H. Wang, H. Cong, T. Wang, J. J. Zhang. O-band and C/L-band III-V quantum dot lasers monolithically grown on Ge and Si substrate. Appl. Sci., 9, 385(2019).

    [27] Z. C. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, G. Roelkens. A III-V-on-Si ultra-dense comb laser. Light Sci. Appl., 6, 6260(2017).

    [28] V. Corral, R. Guzmán, C. Gordón, X. J. M. Leijtens, G. Carpintero. Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach–Zehnder interferometer. Opt. Lett., 41, 1937-1940(2016).

    [29] M. L. Davenport, S. T. Liu, J. E. Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon. Res., 6, 468-478(2018).

    [30] S. T. Liu, X. R. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, J. E. Bowers. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 6, 128-134(2019).

    [31] S. J. Pan, J. O. Huang, Z. C. Zhou, Z. X. Liu, L. Ponnampalam, Z. Z. Liu, M. C. Tang, M. C. Lo, Z. Z. Cao, K. Nishi, K. Takemasa, M. Sugawara, R. Penty, I. White, A. Seeds, H. Y. Liu, S. M. Chen. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C. Photon. Res., 8, 1937-1942(2020).

    [32] L. P. Hou, Y. G. Huang, Y. H. Liu, R. K. Zhang, J. K. Wang, B. J. Wang, H. L. Zhu, B. Hou, B. C. Qiu, J. H. Marsh. Frequency comb with 100 GHz spacing generated by an asymmetric MQW passively mode-locked laser. Opt. Lett., 45, 2760-2763(2020).

    [33] G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, R. Beausoleil. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels. IEEE International Semiconductor Laser Conference (ISLC), 1-2(2018).

    [34] G. Kurczveil, A. Descos, D. Liang, M. Fiorentino, R. Beausoleil. Hybrid silicon quantum dot comb laser with record wide comb width. OSA FiO_LS Virtual Conference, FTu6E.6(2020).

    [35] C. Kumar, R. Goyal. Effect of crosstalk in super dense wavelength division multiplexing system using hybrid optical amplifier. J. Opt. Commun., 40, 347-351(2019).

    [36] M. Sysak, J. Johnson, D. Lewis. CW-WDM MSA technical specifications Rev 1.0(2021).

    [37] Z. Zhang, R. Hogg, X. Lv, Z. Wang. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv. Opt. Photonics, 2, 201-228(2010).

    [38] Y. Li, F. Chiragh, Y. Xin, C. Lin, J. Kim, C. Christodoulou, L. Lester. Harmonic mode-locking using the double interval technique in quantum dot lasers. Opt. Express, 18, 14637-14643(2010).

    [39] H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin. P-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Appl. Phys. Lett., 89, 073113(2006).

    [40] J. Z. Huang, W. Q. Wei, J. J. Chen, Z. H. Wang, T. Wang, J. J. Zhang. P-doped 1300 nm InAs/GaAs quantum dot lasers directly grown on SOI substrate. Opt. Lett., 46, 5525-5528(2021).

    [41] J. K. Mee, R. Raghunathan, D. Murrell, A. Braga, Y. Li, L. F. Lester. Novel optical systems design and optimization XVII. Proc. SPIE, 9193, 919301(2014).

    [42] S. G. Li, Q. Y. Gong, Y. F. Lao, H. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, H. L. Wang. Two-color quantum dot laser with tunable wavelength gap. Appl. Phys. Lett., 95, 251111(2009).

    [43] M. Charis, C. Simos, I. Simos, S. Mikroulis, I. Krestnikov, D. Syvridis. Pulse width narrowing due to dual ground state emission in quantum dot passively mode locked lasers. Appl. Phys. Lett., 96, 211110(2010).

    [44] J. Hillbrand, D. Auth, M. Piccardo, N. Opačak, E. Gornik, G. Strasser, F. Capasso, S. Breuer, B. Schwarz. In-phase and anti-phase synchronization in a laser frequency comb. Phys. Rev. Lett., 124, 023901(2020).

    [45] N. Opačak, B. Schwarz. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Phys. Rev. Lett., 123, 243902(2019).

    [46] S. P. Duill, S. G. Murdoch, R. T. Watts, R. Rosales, A. Ramdane, P. Landais, L. P. Barry. Simple dispersion estimate for single-section quantum-dash and quantum-dot mode-locked laser diodes. Opt. Lett., 41, 5676-5679(2016).

    [47] R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane. High performance mode locking characteristics of single section quantum dash lasers. Opt. Express, 20, 8649-8657(2012).

    [48] N. Eiselt, H. Griesser, M. Eiselt, W. Kaiser, S. Aramideh, J. Olmos, I. Monroy, J. Elbers. Real-time 200 Gb/s (4 × 56.25 Gb/s) PAM-4 transmission over 80 km SSMF using quantum-dot laser and silicon ring-modulator. Optical Fiber Communication Conference, Part F40-O, W4D.3(2017).

    [49] M. B. He, M. Y. Xu, Y. X. Ren, J. Jian, Z. L. Ruan, Y. S. Xu, S. Q. Gao, S. H. Sun, X. Q. Wen, L. D. Zhou, L. Liu, C. J. Guo, H. Chen, S. Y. Yu, L. Liu, X. L. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    CLP Journals

    [1] Jia-Jian Chen, Wen-Qi Wei, Jia-Le Qin, Bo Yang, Jing-Zhi Huang, Zi-Hao Wang, Ting Wang, Chang-Yuan Yu, Jian-Jun Zhang. Multi-wavelength injection locked semiconductor comb laser[J]. Photonics Research, 2022, 10(8): 1840

    Jing-Zhi Huang, Zi-Tao Ji, Jia-Jian Chen, Wen-Qi Wei, Jia-Le Qin, Zi-Hao Wang, Zhi-Yuan Li, Ting Wang, Xi Xiao, Jian-Jun Zhang. Ultra-broadband flat-top quantum dot comb lasers[J]. Photonics Research, 2022, 10(5): 1308
    Download Citation