• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 050601 (2019)
Zhifeng Du, Lijun Song*, and Yan Wang
Author Affiliations
  • College of Physics & Electronics Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
  • show less
    DOI: 10.3788/LOP56.050601 Cite this Article Set citation alerts
    Zhifeng Du, Lijun Song, Yan Wang. Breather Solutions and Their Rouge Wave Limits of NonlinearSchrödinger Equation[J]. Laser & Optoelectronics Progress, 2019, 56(5): 050601 Copy Citation Text show less
    References

    [1] Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focussing and one-dimensional self-modulating waves in nonlinear media[J]. Journal of Mathematical Physics, 34, 62-69(2015). http://www.ams.org/mathscinet-getitem?mr=406174

    [2] Akhmediev N, Ankiewicz A. Solitons: nonlinear pulses and beams[M]. London: Chapman and Hall(1997).

    [3] Kharif C, Pelinovsky E. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics, 22, 603-634(2003). http://www.sciencedirect.com/science/article/pii/S0997754603000724

    [5] Onorato M, Osborne A R, Serio M et al. Freak waves in random oceanic sea states[J]. Physical Review Letters, 86, 5831-5834(2001). http://www.ncbi.nlm.nih.gov/pubmed/11415369

    [6] Dyachenko A I, Zakharov V E. Spatial equation for water waves[J]. JETP Letters, 103, 181-184(2016). http://link.springer.com/article/10.1134/S0021364016030048

    [7] Shrira V I, Geogjaev V V. What makes the Peregrine soliton so special as a prototype of freak waves?[J]. Journal of Engineering Mathematics, 67, 11-22(2010). http://link.springer.com/article/10.1007/s10665-009-9347-2

    [8] Osborne A R, Onorato M, Serio M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains[J]. Physics Letters A, 275, 386-393(2000). http://www.sciencedirect.com/science/article/pii/S0375960100005752

    [9] Osborne A R. The random and deterministic dynamics of ‘rogue waves’ in unidirectional, deep-water wave trains[J]. Marine Structures, 14, 275-293(2001). http://www.sciencedirect.com/science/article/pii/S0951833900000642

    [10] Perrie W. Nonlinear ocean waves[M]. Southampton: Computational Mechanics Publications(2006).

    [11] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 23, 142-144(1973). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4844074

    [12] Agrawal G P. Nonlinear fiber optics[M]. 4 th ed. Amsterdam: Elsevier (2006).

    [13] Andreev P A. First principles derivation of NLS equation for BEC with cubic and quintic nonlinearities at nonzero temperature: dispersion of linear waves[J]. International Journal of Modern Physics B, 27, 1350017(2013). http://www.worldscientific.com/doi/abs/10.1142/S0217979213500173

    [14] Slunyaev A V. A high-order nonlinear envelope equation for gravity waves in finite-depth water[J]. Journal of Experimental and Theoretical Physics, 101, 926-941(2005). http://link.springer.com/article/10.1134/1.2149072

    [15] Wu D, Wang J F, Shi J et al. Generation and transmission of Peregrine solitons in doped fiber[J]. Acta Optica Sinica, 37, 0406002(2017).

    [16] Vishnu P N, Senthilvelan M, Lakshmanan M. Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system[J]. Physical Review E, 88, 022918(2013). http://europepmc.org/abstract/med/24032912

    [17] Frisquet B, Kibler B, Millot G. Collision of akhmediev breathers in nonlinear fiber optics[J]. Physical Review X, 3, 041032(2013). http://adsabs.harvard.edu/abs/2013PhRvX...341032F

    [18] Kedziora D J, Ankiewicz A, Akhmediev N. Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits[J]. Physical Review E, 85, 066601(2012). http://www.ncbi.nlm.nih.gov/pubmed/23005231

    [19] Yang G Y, Li L, Tian J P. Study on Transformation of Kuznetsov-Ma soliton to quasi-fundamental soliton based on spectral-filtering method[J]. Acta Optica Sinica, 36, 0619002(2016).

    [20] Bergé L. Wave collapse in physics: principles and applications to light and plasma waves[J]. Physics Reports, 303, 259-370(1998). http://www.ams.org/mathscinet-getitem?mr=1640679

    [21] Efimov V B, Ganshin A N, Kolmakov G V et al. Rogue waves in superfluid helium[J]. The European Physical Journal Special Topics, 185, 181-193(2010). http://link.springer.com/article/10.1140/epjst/e2010-01248-5

    [22] Shats M, Punzmann H, Xia H. Capillary rogue waves[J]. Physical Review Letters, 104, 104503(2010).

    [23] Kibler B, Fatome J, Finot C et al. The Peregrine soliton in nonlinear fibre optics[J]. Nature Physics, 6, 790-795(2010). http://www.nature.com/nphys/journal/v6/n10/abs/nphys1740.html

    [24] Kichenassamy S. Breather solutions of the nonlinear wave equation[J]. Communications on Pure and Applied Mathematics, 44, 789-818(1991). http://arxiv.org/abs/1709.07787?context=math

    [25] Tajiri M, Watanabe Y. Breather solutions to the focusing nonlinear Schrödinger equation[J]. Physical Review E, 57, 3510-3519(1998). http://adsabs.harvard.edu/abs/1998PhRvE..57.3510T

    [26] Kovalyov M. Modulating properties of harmonic breather solutions of KdV[J]. Journal of Physics A: Mathematical and General, 31, 5117-5128(1998). http://adsabs.harvard.edu/abs/1998JPhA...31.5117K

    [27] Wang C J, Dai Z D, Lin S Q et al. Breather-type soliton and two-soliton solutions for modified Korteweg-de Vries equation[J]. Applied Mathematics and Computation, 216, 341-343(2010). http://www.sciencedirect.com/science/article/pii/S0096300310000214

    [28] Sarkar R, Dey B. Exact compact breather-like solutions of two-dimensional Fermi-Pasta-Ulam lattice[J]. Journal of Physics A: Mathematical and General, 39, L99-L104(2006).

    [29] Zhu Y Q, Hu W. Propagation of breathers in the nematic liquid crystal cell without bias voltage[J]. Acta Optica Sinica, 35, 0919001(2015).

    [30] Benjamin T B, Feir J E. The disintegration of wave trains on deep water. Part 1. Theory[J]. Journal of Fluid Mechanics, 27, 417-430(1967).

    [31] Lu X, Wang D S. Modulation instability in dispersion managed soliton systems[J]. Laser Technology, 36, 557-561(2012).

    [32] Akhmediev N N, Korneev V I, Mitskevich N V. Modulation instability in an optical fiber induced by cross-phase modulation[J]. Radiophysics and Quantum Electronics, 34, 73-77(1991).

    [33] Akhmediev N. Soto-Crespo J M, Ankiewicz A. Extreme waves that appear from nowhere: on the nature of rogue waves[J]. Physics Letters A, 373, 2137-2145(2009).

    [34] Akhmediev N, Ankiewicz A, Taki M. Waves that appear from nowhere and disappear without a trace[J]. Physics Letters A, 373, 675-678(2009).

    [35] Shukla P K, Kourakis I, Eliasson B et al. Instability and evolution of nonlinearly interacting water waves[J]. Physical Review Letters, 97, 094501(2006).

    [36] Tao Y S, He J S. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation[J]. Physical Review E, 85, 026601(2012).

    [37] He J S, Xu S W, Porsezian K. Rogue waves of the Fokas-Lenells equation[J]. Journal of the Physical Society of Japan, 81, 124007(2012).

    [38] Li C, He J, Porsezian K et al. Rogue waves of the Hirota and the Maxwell-Bloch equations[J]. Physical Review E, 87, 012913(2013).

    [39] Bandelow U, Akhmediev N. Sasa-Satsuma equation: soliton on a background and its limiting cases[J]. Physical Review E, 86, 026606(2012).

    [40] Soto-Crespo J M, Grelu P, Akhmediev N. Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers[J]. Physical Review E, 84, 016604(2011).

    [41] Bespalov V I, Talanov V I. Filamentary structure of light beams in nonlinear liquids[J]. Zhetf Pisma Redaktsiiu, 3, 471(1966).

    [42] Voronovich V V, Shrira V I, Thomas G. Can bottom friction suppress 'freak wave' formation?[J]. Journal of Fluid Mechanics, 604, 263-296(2008).

    [43] He J S, Zhang H R, Wang L H et al. Generating mechanism for higher-order rogue waves[J]. Physical Review E, 87, 052914(2013).

    [44] Kedziora D J, Ankiewicz A, Akhmediev N. Circular rogue wave clusters[J]. Physical Review E, 84, 056611(2011).

    [45] Kedziora D J, Ankiewicz A, Akhmediev N. Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions[J]. Physical Review E, 88, 013207(2013).

    [46] Chowdury A, Kedziora D J, Ankiewicz A et al. Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions[J]. Physical Review E, 91, 022919(2015).

    [47] Chowdury A, Krolikowski W. Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations[J]. Physical Review E, 95, 062226(2017).

    Zhifeng Du, Lijun Song, Yan Wang. Breather Solutions and Their Rouge Wave Limits of NonlinearSchrödinger Equation[J]. Laser & Optoelectronics Progress, 2019, 56(5): 050601
    Download Citation