• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036009 (2023)
Feng Han, Tingkui Mu*, Haoyang Li, and Abudusalamu Tuniyazi
Author Affiliations
  • Xi’an Jiaotong University, School of Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi’an, China
  • show less
    DOI: 10.1117/1.APN.2.3.036009 Cite this Article Set citation alerts
    Feng Han, Tingkui Mu, Haoyang Li, Abudusalamu Tuniyazi. Deep image prior plus sparsity prior: toward single-shot full-Stokes spectropolarimetric imaging with a multiple-order retarder[J]. Advanced Photonics Nexus, 2023, 2(3): 036009 Copy Citation Text show less
    References

    [1] M. T. Eismann. Hyperspectral Remote Sensing(2012).

    [2] Y. Zhao et al. Multi-band Polarization Imaging and Applications(2016).

    [3] J. Wang et al. Hybrid reconstruction of the physical model with the deep learning that improves structured illumination microscopy. Adv. Photonics Nexus, 2, 016012(2023).

    [4] Z. Zhang et al. Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture. Photonics Res., 9, 2277-2287(2021).

    [5] J. S. Tyo et al. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt., 45, 5453-5469(2006).

    [6] N. Hagen, M. W. Kudenov. Review of snapshot spectral imaging technologies. Opt. Eng., 52, 090901(2013).

    [7] S. Takizawa, K. Hiramatsu. High-speed hyperspectral imaging enabled by compressed sensing in time domain. Adv. Photonics Nexus, 2, 026008(2023).

    [8] T. Mu et al. Optimized design, calibration, and validation of an achromatic snapshot full-Stokes imaging polarimeter. Opt. Express, 27, 23009-23028(2019).

    [9] K. H. Nordsieck. A simple polarimetric system for the lick observatory image-tube scanner. Pub. Astron. Soc. Pac., 86, 324-329(1974).

    [10] K. Oka, T. Kato. Spectroscopic polarimetry with a channeled spectrum. Opt. Lett., 24, 1475-1477(1999).

    [11] F. J. Lannarilli et al. Polarimetric-spectral intensity modulation (P-SIM): enabling simultaneous hyperspectral and polarimetric imaging. Proc. SPIE, 3698, 474-481(1999).

    [12] D. S. Sabatke et al. Snapshot imaging spectropolarimeter. Opt. Eng., 41, 1048-1054(2002).

    [13] F. Snik, T. Karalidi, C. U. Keller. Spectral modulation for full linear polarimetry. Appl. Opt., 48, 1337-1346(2009).

    [14] J. Craven-Jones et al. Infrared hyperspectral imaging polarimeter using birefringent prisms. Appl. Opt., 50, 1170-1185(2011).

    [15] C. Zhang et al. High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope. Opt. Express, 24, 23314-23332(2016).

    [16] G. van Harten et al. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument. Atmos. Meas. Tech., 7, 4341-4351(2014).

    [17] T. Karalidi et al. Observing the Earth as an exoplanet with LOUPE, the lunar observatory for unresolved polarimetry of Earth. Planet. Space Sci., 74, 202-207(2012).

    [18] F. Snik et al. FlySPEX: a flexible multi-angle spectropolarimetric sensing system. Proc. SPIE, 9853, 985308(2016).

    [19] A. Tuniyazi et al. Snapshot polarized light scattering spectroscopy using spectrally-modulated polarimetry for early gastric cancer detection. J. Biophotonics, 14, e202100140(2021).

    [20] A. Tuniyazi et al. Bayesian neural networks enabled snapshot polarized light scattering spectroscopy with uncertainty quantification. Opt. Lasers Eng., 160, 107298(2023).

    [21] R. G. Sellar, G. D. Boreman. Classification of imaging spectrometers for remote sensing applications. Opt. Eng., 44, 013602(2005).

    [22] A. Taniguchi et al. Stabilization of a channeled spectropolarimeter by self-calibration. Opt. Lett., 31, 3279-3281(2006).

    [23] M. W. Kudenov et al. Fourier transform channeled spectropolarimetry in the MWIR. Opt. Express, 15, 12792-12805(2007).

    [24] J. Craven-Jones, M. W. Kudenov. False signature reduction in channeled spectropolarimetry. Opt. Eng., 49, 053602(2010).

    [25] T. Mu et al. Alignment and retardance errors, and compensation of a channeled spectropolarimeter. Opt. Commun., 294, 88-95(2013).

    [26] X. Ju et al. Easily implemented approach for the calibration of alignment and retardation errors in a channeled spectropolarimeter. Appl. Opt., 57, 8600-8613(2018).

    [27] D. J. Lee, C. F. LaCasse, J. M. Craven. Compressed channeled spectropolarimetry. Opt. Express, 25, 32041-32063(2017).

    [28] G. Zhou, Y. Li, K. Liu. Adaptive linear reconstruction with regularizer for channeled spectropolarimeter. Opt. Eng., 60, 064111(2021).

    [29] F. Han et al. Iterative reconstruction for general linear imaging polarimetry without polarimetric calibration. Opt. Lett., 45, 57-60(2020).

    [30] F. Han et al. Iterative reconstruction for snapshot intensity-modulated linear imaging spectropolarimetry without Fourier transform and phase calibration. Opt. Lasers Eng., 134, 106286(2020).

    [31] Y. Qiao et al. Intensity modulation-based spectral polarization measurement method of coded aperture. Opt. Commun., 437, 128-132(2019).

    [32] X. Lv et al. Lenslet-based snapshot full-Stokes imaging spectropolarimeter. Opt. Laser Tech., 148, 107758(2022).

    [33] Q. Li et al. Channeled imaging spectropolarimeter reconstruction by neural networks. Opt. Lett., 46, 4394-4397(2021).

    [34] X. B. Lv et al. Spectral–temporal channeled spectropolarimetry using deep-learning-based adaptive filtering. Opt. Express, 29, 35556-35569(2021).

    [35] C. Huang et al. Convolutional neural network-based spectrum reconstruction solver for channeled spectropolarimeter. Opt. Express, 30, 10367-10386(2022).

    [36] D. Ulyanov, A. Vedaldi, V. Lempitsky. Deep image prior, 9446-9454(2018).

    [37] R. Heckel, P. Hand. Deep decoder: concise image representations from untrained non-convolutional networks(2019).

    [38] E. Bostan et al. Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network. Optica, 7, 559-562(2020).

    [39] F. Wang et al. Phase imaging with an untrained neural network. Light: Sci. Appl., 9, 77(2020).

    [40] F. Yang et al. Robust phase unwrapping via deep image prior for quantitative phase imaging. IEEE Trans. Image Process., 30, 7025-7037(2021).

    [41] X. Zhang, F. Wang, G. Situ. BlindNet: an untrained learning approach toward computational imaging with model uncertainty. J. Phys. D: Appl. Phys., 55, 034001(2022).

    [42] K. C. Zhou, R. Horstmeyer. Diffraction tomography with a deep image prior. Opt. Express, 28, 12872-12896(2020).

    [43] F. Niknam, H. Qazvini, H. Latifi. Holographic optical field recovery using a regularized untrained deep decoder network. Sci. Rep., 11, 10903(2021).

    [44] Y. Zhu et al. Full scene underwater imaging with polarization and an untrained network. Opt. Express, 29, 41865-41881(2021).

    [45] K. Monakhova et al. Untrained networks for compressive lensless photography. Opt. Express, 29, 20913-20929(2021).

    [46] H. Yu et al. Untrained deep learning-based fringe projection profilometry. APL Photonics, 7, 016102(2022).

    [47] F. Wang et al. Far-field super-resolution ghost imaging with a deep neural network constraint. Light. Sci. Appl., 11, 1(2022).

    [48] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [49] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [50] C. Zuo et al. Deep learning in optical metrology: a review. Light. Sci. Appl., 11, 39(2022).

    [51] M. Figueiredo, R. Nowak, S. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1, 586-597(2007).

    [52] J. Bioucas-Dias, M. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding for image restoration. IEEE Trans. Image Process., 16, 2992-3004(2007).

    [53] J. N. Mait, G. W. Euliss, R. A. Athale. Computational imaging. Adv. Opt. Photonics, 10, 409-483(2018).

    [54] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci., 9351, 234-241(2015).

    [55] K. He et al. Deep residual learning for image recognition, 770-778(2016).

    [56] K. Wang et al. Deep learning spatial phase unwrapping: a comparative review. Adv. Photonics Nexus, 1, 014001(2022).

    [57] B. Arad, O. Ben-Shahar. Sparse recovery of hyperspectral signal from natural RGB images, 19-34(2016).

    [58] T. Mu et al. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter. Opt. Lett., 44, 1281-1284(2019).

    [59] T. Mu et al. Snapshot hyperspectral imaging polarimetry with full spectropolarimetric resolution. Opt. Laser. Eng., 148, 106767(2022).

    [60] H. Li et al. Miniature snapshot optically replicating and remapping imaging spectropolarimeter (MINI-ORRISp): design, calibration and performance(2023).

    [61] H. Chen et al. Fourier Imager Network (FIN): a deep neural network for hologram reconstruction with superior external generalization. Light: Sci. Appl., 11, 254(2022).

    [62] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [63] F. Hoch et al. Characterization of multimode linear optical networks. Adv. Photonics Nexus, 2, 016007(2023).

    [64] Z. Lin et al. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits. Photonics Res., 8, 864-874(2020).

    [65] T. Li et al. Integrating the optical tweezers and spanner onto an individual single-layer metasurface. Photonics Res., 9, 1062-1068(2021).

    [66] Y. Ni et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).

    [67] X. Hua et al. Ultra-compact snapshot spectral light-field imaging. Nat. Commun., 13, 2732(2022).

    [68] D. Yang et al. Multiwavelength high-order optical vortex detection and demultiplexing coding using a metasurface. Adv. Photonics Nexus, 1, 016005(2022).

    [69] T. Li et al. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles. Opt. Lett., 48, 255-258(2023).

    [70] K. Qu et al. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing. Adv. Photonics Nexus, 2, 016010(2023).

    [71] S. Ebel et al. Optical reflective metasurfaces based on mirror-coupled slot antennas. Adv. Photonics Nexus, 2, 016005(2023).

    [72] S. Lung et al. Real-time monitoring of polarization state deviations with dielectric metasurfaces. Adv. Photonics Nexus, 2, 026003(2023).

    Feng Han, Tingkui Mu, Haoyang Li, Abudusalamu Tuniyazi. Deep image prior plus sparsity prior: toward single-shot full-Stokes spectropolarimetric imaging with a multiple-order retarder[J]. Advanced Photonics Nexus, 2023, 2(3): 036009
    Download Citation