• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0700003 (2023)
Yuqing Fan1、2、3, Xiangchun Shi1、2、3、*, Jing Liu1、2, Chuanpeng Qian1、2, Ting Yu1、2、3, and Xisheng Ye1、2、3
Author Affiliations
  • 1Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP220654 Cite this Article Set citation alerts
    Yuqing Fan, Xiangchun Shi, Jing Liu, Chuanpeng Qian, Ting Yu, Xisheng Ye. Research Progress of Tm-Doped Pulsed Solid-State Lasers in 2 μm Band[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700003 Copy Citation Text show less
    References

    [1] Zhu X P, Liu J Q, Bi D C et al. Development of all-solid coherent Doppler wind lidar[J]. Chinese Optics Letters, 10, 012801(2012).

    [2] Diao W F, Zhang X, Liu J Q et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 12, 072801(2014).

    [3] Bakaraju R C, Ehrmann K, Falk D et al. Physical human model eye and methods of its use to analyse optical performance of soft contact lenses[J]. Optics Express, 18, 16868-16882(2010).

    [4] Pierce M C, Jackson S D, Dickinson M R et al. Laser-tissue interaction with a high-power 2-µm fiber laser: preliminary studies with soft tissue[J]. Lasers in Surgery and Medicine, 25, 407-413(1999).

    [5] Koopmann P, Lamrini S, Scholle K et al. Efficient diode-pumped laser operation of Tm∶Lu2O3 around 2 μm[J]. Optics Letters, 36, 948-950(2011).

    [6] Xie X B, Li S G, Zhu X L et al. Characteristics of single resonant nanosecond pulse optical parametric oscillator with output wavelength of 2.05 μm[J]. Chinese Journal of Lasers, 43, 1208002(2016).

    [7] Cai Y H, Zhang J X, Chen X et al. Side-pumped, conductively cooled (Tm, Ho)∶YLF pulsed laser with more than one-hundred-nanosecond pulse width[J]. Chinese Journal of Lasers, 48, 1301005(2021).

    [8] Wang F, Huang H T, Bao Y S et al. GSA and ESA dual-wavelength pumped 2.3 μm Tm∶YAP lasers[J]. Chinese Journal of Lasers, 49, 0101022(2022).

    [9] Yao B Q, Yang K, Mi S Y et al. Research progress of high-power Ho∶YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 49, 0101002(2022).

    [10] Jackson S D, King T A. Theoretical modeling of Tm-doped silica fiber lasers[J]. Journal of Lightwave Technology, 17, 948-956(1999).

    [11] Li Y F. Study of diode pumped Tm3+ doped solid state lasers[D](2008).

    [12] Koechner W[M]. Solid-state laser engineering. Sun W, Transl(2002).

    [13] Buryy O A, Sugak D Y, Ubizskii S B et al. The comparative analysis and optimization of the free-running Tm3+∶YAP and Tm3+∶YAG microlasers[J]. Applied Physics B, 88, 433(2007).

    [14] Li G, Liu H, Lu F et al. Analysis on preferential free running laser wavelength and performance modeling of Tm-doped YAP and YLF[J]. Applied Optics, 53, 4987-4996(2014).

    [15] Johnson L F, Geusic J E, van Uitert L G. Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet[J]. Applied Physics Letters, 7, 127-129(1965).

    [16] Pinto J F, Esterowitz L, Rosenblatt G H. Continuous-wave mode-locked 2-μm Tm∶YAG laser[J]. Optics Letters, 17, 731-732(1992).

    [17] Ma Q L, Zong N, Xie S Y et al. Q-switched Tm∶YAG laser intracavity-pumped by a 1064 nm laser[J]. Chinese Physics Letters, 26, 124211(2009).

    [18] Wu C T, Ju Y L, Wang Q et al. Injection-seeded Tm∶YAG laser at room temperature[J]. Optics Communications, 284, 994-998(2011).

    [19] Cao D, Du S F, Peng Q J et al. A 171.4 W diode-side-pumped Q-switched 2 μm Tm∶YAG laser with a 10 kHz repetition rate[J]. Chinese Physics Letters, 29, 044210(2012).

    [20] Cai G Q, Ju Y L, Yao B Q et al. Acousto-optically cavity dumped Tm∶YAG laser with 54 ns pulses at 200 kHz repetition rate[J]. Optics Express, 22, 9942-9947(2014).

    [21] Ma J, Xie G Q, Zhang J et al. Passively mode-locked Tm∶YAG ceramic laser based on graphene[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 50-55(2015).

    [22] Yumoto M, Saito N, Urata Y et al. 128 mJ/pulse, laser-diode-pumped, Q-switched Tm∶YAG laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 364-368(2015).

    [23] Li L J, Zhou L, Li T X et al. Passive mode-locking operation of a diode-pumped Tm∶YAG laser with a MoS2 saturable absorber[J]. Optics & Laser Technology, 124, 105986(2020).

    [24] Körner J, Jambunathan V, Yue F et al. Diode-pumped, electro-optically Q-switched, cryogenic Tm∶YAG laser operating at 1.88 μm[J]. High Power Laser Science and Engineering, 9, 103-108(2021).

    [25] Fu Q S, Niu C, Liu J G et al. LD end-pumped Tm∶ YAG acousto-optic Q-switched double-pulse laser[J]. Infrared Physics & Technology, 119, 103923(2021).

    [26] Heinrich A, Harlander M, Bragagna T et al. 2 μm diode pumped Tm∶YAG laser with 180 mJ pulse energy[C](2013).

    [27] Gluth A, Wang Y C, Petrov V et al. GaSb-based SESAM mode-locked Tm∶YAG ceramic laser at 2 µm[J]. Optics Express, 23, 1361-1369(2015).

    [28] Jin L. Study of actively Q-switched 2 μm Tm∶YAG slab laser[D](2017).

    [29] Cho C Y, Chen Y F, Zhang G et al. Exploring the self-mode locking of the 2 μm Tm∶YAG laser with suppression of the self-pulsing dynamic[J]. Optics Letters, 42, 5226-5229(2017).

    [30] Gao P, Huang J H, Liu H G et al. Passively Q-switched solid-state Tm∶YAG laser with MoS2 as saturable absorber[J]. Chinese Journal of Lasers, 45, 0701002(2018).

    [31] Gao P, Huang H Z, Wang X H et al. Passively Q-switched solid-state Tm∶YAG laser using topological insulator Bi2Te3 as a saturable absorber[J]. Applied Optics, 57, 2020-2024(2018).

    [32] Wu C T, Jiang Y, Wang C et al. Pulse-diode-intermittent-pumped 2-µm acousto-optically Q-switched Tm∶YAG laser[J]. Infrared Physics & Technology, 96, 151-154(2019).

    [33] Shang J C, Feng T L, Zhao S Z et al. Saturable absorption characteristics of Bi2Se3 in a 2 µm Q-switching bulk laser[J]. Optics Express, 28, 5639-5647(2020).

    [34] Shen Y J, Han X H, Li L J et al. Continuous-wave mode-locked Tm∶YAG laser with GaAs-based SESAM[J]. Infrared Physics & Technology, 111, 103539(2020).

    [35] Zhou L, Duan X M, Xie W Q et al. Optical and laser performances of a layered ReSe2 saturable absorber for a 2-µm solid laser[J]. Optics & Laser Technology, 135, 106685(2021).

    [36] Xu J Y, Cai E L, Zhang S Y et al. Nickel-vanadium layered double hydroxide nanosheets as the saturable absorber for a passively Q-switched 2 µm solid-state laser[J]. Applied Optics, 60, 1851-1855(2021).

    [37] Xu J Y, Cai E L, Dong S H et al. Nickel-cobalt layered double hydroxide nanosheets saturable absorber for passively Q-switched Tm∶YAG ceramic 2 μm solid-state laser[J]. Optics & Laser Technology, 144, 107406(2021).

    [38] Li L J, Qi T Q, Xie W Q et al. A passively mode-locked Tm∶YAG laser with a titanium disulfide saturable absorber[J]. Infrared Physics & Technology, 119, 103942(2021).

    [39] Elder I F, Payne J. Diode-pumped, room-temperature Tm∶YAP laser[J]. Applied Optics, 36, 8606-8610(1997).

    [40] Sullivan A C, Zakel A, Wagner G J et al. High power Q-switched Tm∶YALO lasers[C], 329(2004).

    [41] Yao B Q, Wang W, Tian Y et al. InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm∶YAP laser[J]. Laser Physics, 21, 2020-2024(2011).

    [42] Yao B Q, Li X L, Shi H W et al. Diode-pumped electro-optical cavity-dumped Tm∶YAP laser at 1996.9 nm[J]. Chinese Optics Letters, 13, 101402(2015).

    [43] Zhang H K, Huang J Y, Zhou C et al. CW mode-locked Tm∶YAP laser with semiconductor saturable-absorber mirror at around 2 μm[J]. Infrared and Laser Engineering, 47, 0505003(2018).

    [44] Wen Y, Zhang H L, Zhang L et al. 1.99 micron Tm∶YAP acousto-optical Q-switch laser[J]. IOP Conference Series: Materials Science and Engineering, 563, 032007(2019).

    [45] Niu Z Q, Li G Q, Yang K J et al. Doubly Q-switched Tm∶YAP laser with g-C3N4 saturable absorber and AOM[J]. Optical Materials, 96, 109306(2019).

    [46] Wen Y, Li T Y, He Q F et al. Laser-diode dual-end-pumped electro-optic Q-switched slab Tm∶YAP laser[J]. Infrared Physics & Technology, 105, 103215(2020).

    [47] Yang Y L, Zhao S Z, Li T et al. High-peak-power Q-switched 1988 nm bulk laser based on an electro-optical La3Ga5SiO14 modulator[J]. Applied Optics, 59, 2616-2620(2020).

    [48] Yao B Q, Shi H W, Dai T Y et al. Diode-pumped acousto-optical cavity-dumped Tm∶YAP laser at 1989 nm[J]. Applied Optics, 53, 6816-6819(2014).

    [49] Li L J, Yang X N, Zhou L et al. BN as a saturable absorber for a passively mode-locked 2 µm solid-state laser[J]. Physica Status Solidi- Rapid Research Letters, 13, 1800482(2018).

    [50] Li L J, Zhou L, Yang X N et al. A 2.22-W passively Q-switched Tm3+-doped laser with a TiC2 saturable absorber[J]. IEEE Photonics Journal, 11, 1501807(2019).

    [51] Wang X H, Hu J Y, Xu J L et al. Sb2Te3 as the saturable absorber for the ∼2.0 μm passively Q-switched solid state pulsed laser[J]. RSC Advances, 9, 29312-29316(2019).

    [52] Niu Z Q, Yang K J, Li T et al. Doubly passively Q-switched Tm: YAP laser with MoS2 and WS2 saturable absorbers at 2 μm[J]. Optik, 198, 163205(2019).

    [53] Xu S H, Wang Q G, Zhang H Y et al. Nonlinear optical properties and Q-switched laser application of a novel Mo0.5Re0.5S2 ternary alloy material at 2 μm[J]. Applied Physics Express, 13, 022006(2019).

    [54] Berthomé Q, Grisard A, Faure B et al. Actively Q-switched tunable single-longitudinal-mode 2 µm Tm∶YAP laser using a transversally chirped volume Bragg grating[J]. Optics Express, 28, 5013-5021(2020).

    [55] Li L J, Cui W C, Yang X N et al. A high-beam-quality passively Q-switched 2 μm solid-state laser with a WSe2 saturable absorber[J]. Optics & Laser Technology, 125, 105960(2020).

    [56] Ma Y F, Sun H Y, Ran B F et al. Passively Q-switched Tm∶YAlO3 laser based on WS2/MoS2 two-dimensional nanosheets at 2 μm[J]. Optics & Laser Technology, 126, 106084(2020).

    [57] Lin S T, Qiu Z R, Chen C P. Actively Q-switched Tm∶YAP laser constructed using an electro-optic periodically poled lithium niobate Bragg modulator[J]. IEEE Photonics Journal, 12, 1503509(2020).

    [58] Zhang H Y, Xu S H, Wang Q G et al. 2 µm passively Q-switched all-solid-state laser based on a Ta2NiSe5 saturable absorber[J]. Optical Materials Express, 10, 3090-3096(2020).

    [59] Yuan Z, Ling W J, Chen C et al. A high-power LD double-end-pumped acousto-optic Q-switched Tm∶YAP laser[J]. Chinese Journal of Lasers, 48, 232-239(2021).

    [60] Zhang L, Zhang H D, Sun W et al. A 0.97-W passively Q-switched Tm∶YAP laser with a WSe2 saturable absorber[J]. Proceedings of SPIE, 11763, 117634Z(2021).

    [61] Sheintop U, Perez E, Nahear R et al. Widely tunable, narrow bandwidth, mJ level Tm∶YAP laser with YAG Etalons[J]. Optics & Laser Technology, 136, 106710(2021).

    [62] Gao T W, Zhang R, Shi Z C et al. High peak power passively Q-switched 2 μm solid-state laser based on a MoS2 saturated absorber[J]. Microwave and Optical Technology Letters, 63, 1990-1994(2021).

    [63] Niu Z Q, Feng T L, Li T et al. Theoretical and experimental investigations on doubly Q-switched Tm: YAP laser with EOM and Sb2Te3 nanosheets[J]. Optics Express, 29, 24684-24694(2021).

    [64] Liu W X, Zu Y Q, Guo J et al. Watt-level graphdiyne passively Q-switched Tm∶YAP laser at ~2 µm[J]. Optik, 242, 167208(2021).

    [65] Li S C, Li L J, Qi T Q et al. Passively Q-switched Tm∶YAP laser with a lead zirconate titanate saturable absorber[J]. Applied Optics, 60, 8097-8102(2021).

    [66] Na Q X, Xu C W, Chen H et al. Continuous-wave and mode-locking operation of Tm∶YAP lasers near 1.8 μm[J]. Optics & Laser Technology, 142, 107225(2021).

    [67] Niu Z Q, Feng T L, Li T et al. Layered metallic vanadium disulfide for doubly Q-switched Tm∶YAP laser with EOM: experimental and theoretical investigations[J]. Nanomaterials, 11, 2605(2021).

    [68] Zhao L N, Zhang W Y, Yuan Y et al. Mo∶BiVO4 nanoparticles-based optical modulator and its application in a 2-μm pulsed laser[J]. Nanomaterials, 11, 3243(2021).

    [69] Nahear R, Bach Y, Noach S. Electro optic Tm∶YAP/KLTN laser using polarization modulation[J]. Optics & Laser Technology, 146, 107548(2022).

    [70] Meng Y, Liu Y Z, Li T et al. Investigation of nonlinear optical modulation characteristics of MXene VCrC for pulsed lasers[J]. Molecules, 27, 759(2022).

    [71] Chu H W, Dong L, Pan Z B et al. Passively Q-switched Tm∶YAP laser with a zeolitic imidalate framework-67 saturable absorber operating at 3H4→3H5 transition[J]. Optics & Laser Technology, 147, 107679(2022).

    [72] Ketteridge P A, Budni P A, Knights M G et al. An all solid-state 7 watt CW, tunable Tm∶YLF laser[C], LS2(1997).

    [73] Petros M, Yu J, Singh U et al[M]. 300-mJ diode-pumped 1.9-μm Tm: YLF laser(2002).

    [74] Jabczynski J K, Kwiatkowski J, Zendzian W et al. Compact, high peak power, diode pumped, Q-switched Tm∶YLF laser[C](2007).

    [75] Soulard R, Tyazhev A, Doualan J L et al. 2.3 μm Tm 3+∶YLF mode-locked laser[J]. Optics Letters, 42, 3534-3536(2017).

    [76] Canbaz F, Yorulmaz I, Sennaroglu A. Kerr-lens mode-locked 2.3-μm Tm3+∶YLF laser as a source of femtosecond pulses in the mid-infrared[J]. Optics Letters, 42, 3964-3967(2017).

    [77] Goldberg L, King V, Cole B et al. Passively Q-switched 10 mJ Tm∶YLF laser with efficient OPO conversion to mid-IR[J]. Proceedings of SPIE, 11259, 1125906(2020).

    [78] Tamer I, Reagan B A, Galvin T et al. Demonstration of a compact, multi-joule, diode-pumped Tm∶YLF laser[J]. Optics Letters, 46, 5096-5099(2021).

    [79] Li C, Song J, Shen D Y et al. Flash-lamp-pumped acousto-optic Q-switched Cr-Tm∶YAG laser[J]. Optical Review, 7, 58-61(2000).

    [80] Tyazhev A, Soulard R, Godin T et al. Passively mode-locked diode-pumped Tm3+∶YLF laser emitting at 1.91 µm using a GaAs-based SESAM[J]. Laser Physics Letters, 15, 045807(2018).

    [81] Eytan P, Rotem N, Uzziel S et al. Active and passive Q-switched tunable mJ level Tm laser[J]. Proceedings of SPIE, 11033, 110330D(2019).

    [82] Li L J, Yang X N, Zhou L et al. High beam quality passively Q-switched operation of a slab Tm∶YLF laser with a MoS2 saturable absorber mirror[J]. Optics & Laser Technology, 112, 39-42(2019).

    [83] Cao L H, Tang W J, Zhao S Z et al. 2 μm Passively Q-switched all-solid-state laser based on WSe2 saturable absorber[J]. Optics & Laser Technology, 113, 72-76(2019).

    [84] Na Q X, Huang Z Y, He M M et al. Watt-level passively mode-locked Tm∶YLF laser at 1.83 µm[J]. Optics Express, 27, 35230-35237(2019).

    [85] Kucirek P, Erben B, Hörmann F et al. Rod and slab type cw and Q-switched Tm∶YLF lasers[C], MTh3C.4(2020).

    [86] Nahear R, Vidal Y, Noach S et al. Active Q-switch Tm∶YLF based on electro-optic KLTN[J]. Proceedings of SPIE, 11259, 112590X(2020).

    [87] Wu F Y, Wang S Q, Chen H W et al. 2.3 µm nanosecond passive Q-switching of an LD-pumped Tm∶ YLF laser using gold nanorods as a saturable absorber[J]. Frontiers of Information Technology & Electronic Engineering, 22, 312-317(2021).

    [88] Noach S, Nahear R, Vidal Y et al. Electro-optic active Q-switched Tm∶YLF laser based on polarization modulation[J]. Optics Letters, 46, 1971-1974(2021).

    [89] Guo L, Yang Y L, Wang R H et al. Experimental and theoretical study of an actively Q-switched Tm∶YLF laser with an acousto-optic modulator[J]. Molecules, 26, 7324(2021).

    Yuqing Fan, Xiangchun Shi, Jing Liu, Chuanpeng Qian, Ting Yu, Xisheng Ye. Research Progress of Tm-Doped Pulsed Solid-State Lasers in 2 μm Band[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700003
    Download Citation