• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 4, 501 (2018)
WANG Chao1、*, GOU Xue-Ke1, DUAN Ying1, HU Jun1, ZHANG Ze-Zhan1, YANG Yang1, JIANG Jing1, JIANG Hong-Chuan1, DING Jie-Xiong2, CHENG Yu-Hua3, LI Li3, ZHANG Jiang-Mei4, CHEN Hong-Min5, XIONG Bing5, LIU Xian-Fu5, and SHI Xiao-Jiang5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.04.019 Cite this Article
    WANG Chao, GOU Xue-Ke, DUAN Ying, HU Jun, ZHANG Ze-Zhan, YANG Yang, JIANG Jing, JIANG Hong-Chuan, DING Jie-Xiong, CHENG Yu-Hua, LI Li, ZHANG Jiang-Mei, CHEN Hong-Min, XIONG Bing, LIU Xian-Fu, SHI Xiao-Jiang. A review of aero-engine turbine blade temperature measurement[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 501 Copy Citation Text show less
    References

    [3] Grant H P, Przybyszewski J S, Claing R G. Turbine blade temperature measurements using thin film temperature sensors[J]. Turbine Blades, 1981,NASA, TM X-71844.

    [4] Wrbanek J D, Fralick G C. Thin film physical sensor instrumentation research and development at NASA Glenn research center[R]. 2006.

    [5] Lepicovsky J, Bruckner R, Smith F. Application of thin-film thermocouples to localized heat transfer measurements[C]// Joint Propulsion Conference and Exhibit. 1995.

    [6] Liebert C H, Mazaris G A, Brandhorst, et al. Turbine blade metal temperature measurement with a sputtered thin film chromel-alumel thermocouple[J]. 1975, 76: 14124.

    [7] Martin A L C, Holanda R. Applications of thin film thermocouples for surface temperature measurement[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1994, 95:65-76.

    [15] Shukin S, Annerfeldt M, Bjorkman M. Siemens SGT-800 industrial gas turbine enhanced to 47MW: design modifications and operation experience[C]// ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2008:65-70.

    [16] Romanov D, Devoe J, Ginzbursky L. Optimization of temperature measurement technique used in high heat flux environment[C]// ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2011:1129-1136.

    [25] Douglas J, Smith C A, Taylor S J R. An integrated approach to the application of high bandwidth optical pyrometry to turbine blade surface temperature mapping[C]// International Congress on Instrumentation in Aerospace Simulation Facilities. IEEE Xplore, 1999:4/1-4/6.

    [26] Tobin K W, Allison S W, Cates M R, et al. High-temperature phosphor thermometry of rotating turbine blades[J]. Aiaa Journal, 2012, 28(8):1485-1490.

    [27] Dowell L J, Investigation and development of phosphor thermometry[D]. University of Virginia, 1989.

    [28] Allison S W, Gillies G T. Remote thermometry with thermographic phosphors: instrumentation and applications[J]. Review of Scientific Instruments, 1997, 68(7): 2615-2650.

    [29] Feist J P, Heyes A L. The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications[J]. Measurement Science & Technology, 2000, 11(7):942.

    [30] Khalid A H, Kontis K. Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications[J]. Sensors, 2008, 8(9):5673.

    [31] Aldén M, Omrane A, Richter M, et al. Thermographic phosphors for thermometry: A survey of combustion applications[J]. Progress in Energy & Combustion Science,2011,37(4):422-461.

    [38] Modest M F. Radiative heat transfer[J]. International Journal of Heat & Mass Transfer, 2003, 12(10):1331-1337.

    [39] Usamentiaga R, Garcia D F, Molleda J, et al. Temperature measurement using the wedge method: Comparison and application to emissivity estimation and compensation[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(5):1768-1778.

    [44] Witherell P G, Faulharber M E. The silicon solar cell as a photometric detector[J]. Appiedl.Opticst.1970,9(1):73-78.

    [46] ROLLS-ROYCE Ltd. Gas turbine engine: European patent .Pant GB972394A[P]. 1962-01-10.

    [47] HILL R J. Gas turbine engine: European patent .Pant GB1104322A[P]. 1965-05-24.

    [48] Douglas J, Jennings R P. Data selection circuits, systems and methods: U.S. patent 4,799,190[P].1989-1-17.

    [49] Bird C, Parrish C J. Component temperature measuring method: U.S. patent 7,003,425[P]. 2006-2-21.

    [50] Gebhart J R, Kinchen B E, Strange R R. Optical pyrometer and technique for temperature measurement: U.S. patent 4,222,663[P]. 1980-9-16.

    [51] Suarez-Gonzalez E, Kepple D A. In-flight engine control optical pyrometer: U.S. patent 4,657,386[P]. 1987-4-14.

    [52] Suarez-Gonzalez E, Oqlukian R L. Triple spectral area pyrometer: U.S. patent 5,125,739[P].1992-6-30.

    [53] Suarez-Gonzalez E, Oglukian R L, Steinauer C. Turbine pyrometer system for correction of combustor fireball interference: U.S. patent 5,265,036[P]. 1993-11-23.

    [54] Hernaut J P, Beukers R, Heinz W, et al. Submillisecond six-wavelength pyrometer for high-temperature measurements in the range 2000 to 5000 K[J]. High Temperature High Press, 1986,18:617-625.

    [56] Wang G, Wang A, Nirmalan N V, et al. Optical sensor system for a gas turbine engine and method of operating the same: U.S. patent 9,046,411[P]. 2015-6-2.

    [66] SUN Xiao-Gang, ZHAO Wei, YUAN Gui-Bing,et al. Methods of data processing in multi-wavelength thermometry[J]. Journal of Harbin Institute of Technology, 2006,13(04):421-426.

    [81] Kipngetich K D, Feng C, Gao S. Reflection error correction of gas turbine blade temperature[J]. Infrared Physics and Technology,2016,75: 153-159.

    [82] Gao S, Wang L X, Feng C, et al. Analysis and improvement of gas turbine blade temperature measurement error[J]. Measurement Science and Technology,2015,26(10):105203.

    [83] Kipngetich D K,Feng C,Gao S. Single wavelength and ratio pyrometry reflection errors in temperature measurement of gas turbine blade[J]. Measurement,2016,86:133-140.

    [84] Feng C, Wang L, Gao S. A method for turbine blade temperature data segmentation[J]. Journal of Physics: Conference Series,2017,887(1):012067.

    [85] Gao S, Wang L X, Feng C, et al. Analyzing the influence of combustion gas on a gas turbine by radiation thermometry[J]. Infrared Physics and Technology,2015,73:184-193.

    [86] Feng C, Li D, Gao S, et al. Calculating the reflected radiation error between turbine blades and vanes based on double contour integral method[J]. Infrared Physics and Technology,2016,79:171-182.

    [87] Kipngetich K D, Feng C, Gao S. Application of multispectral radiation thermometry in temperature measurement of thermal barrier coated surfaces[J]. Measurement,2016,92:218-223.

    [88] Gao S, Feng C, Wang L, et al. Multi-spectral temperature measurement method for gas turbine blade[J]. Optical Review, 2016, 23(1):17-25.

    [91] Jia J, Wang Y, Zhuang X, et al. High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method[J]. Infrared Physics & Technology, 2017, 81: 305-312.

    [92] Wang Y, Xie F, Wang J. Short-wave infrared signature and detection of aicraft in flight based on space-borne hyperspectral imagery[J]. Chinese Optics Letters, 2016, 14(12):122801.

    [94] Tian J, Fu T, Xu Q, et al. Effective spectral emissivity of gas turbine blades for optical pyrometry[J]. Journal of Heat Transfer, 2017, 139(7):072701.

    [96] Xu X, Yang X X. Contactless temperature measurement technology[J]. Applied Technology, 2012, 1674-6708:62-0159-02.

    [115] Wang Z H, Adams B. Apparatus and method for mornitor a temperature using a thermally fused composite ceramic blackbody temperature probe[P]. US Patent, 5364186. 1994.

    CLP Journals

    [1] YE Zhi-peng, ZHAO Shu-nan, LI Xun-feng, HUAI Xiu-lan. Study on Reflection Characteristics of Completely Oxidized DZ125[J]. Spectroscopy and Spectral Analysis, 2023, 43(1): 230

    WANG Chao, GOU Xue-Ke, DUAN Ying, HU Jun, ZHANG Ze-Zhan, YANG Yang, JIANG Jing, JIANG Hong-Chuan, DING Jie-Xiong, CHENG Yu-Hua, LI Li, ZHANG Jiang-Mei, CHEN Hong-Min, XIONG Bing, LIU Xian-Fu, SHI Xiao-Jiang. A review of aero-engine turbine blade temperature measurement[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 501
    Download Citation