• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0114007 (2024)
Chao Zhang1、2, Xuechun Lin1、2、**, Pengfei Zhao1、*, Zhiyong Dong1, Nan Wang1, Yingying Yang1, and Haijuan Yu1、2
Author Affiliations
  • 1Laboratory of All-Solid-State Light Sources, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101407, China
  • show less
    DOI: 10.3788/LOP232659 Cite this Article Set citation alerts
    Chao Zhang, Xuechun Lin, Pengfei Zhao, Zhiyong Dong, Nan Wang, Yingying Yang, Haijuan Yu. Coherent Beam Combining Technology for Diode Lasers (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114007 Copy Citation Text show less
    References

    [1] Tomm J W, Ziegler M, Hempel M et al. Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers[J]. Laser & Photonics Reviews, 5, 422-441(2011).

    [2] Wade J K, Mawst L J, Botez D et al. 8.8 W CW power from broad-waveguide Al-free active-region (λ= 805 nm) diode lasers[J]. Electronics Letters, 34, 1100-1101(1998).

    [3] Morita T, Nagakura T, Torii K et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1502104(2013).

    [4] Huang R K, Chann B, Burgess J et al. Teradiode’s high brightness semiconductor lasers[J]. Proceedings of SPIE, 9730, 97300C(2016).

    [5] Stickley C M, Filipkowski M E, Parra E et al. The future of high-efficiency diode lasers[J]. Proceedings of SPIE, 5991, 59911O(2006).

    [6] Marmo J, Injeyan H, Komine H et al. Joint high power solid state laser program advancements at Northrop Grumman[J]. Proceedings of SPIE, 7195, 719507(2009).

    [7] Bachmann F. Goals and status of the German national research initiative BRIOLAS (brilliant diode lasers)[J]. Proceedings of SPIE, 6456, 645608(2007).

    [8] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577(2005).

    [9] Redmond S M, Creedon K J, Kansky J E et al. Active coherent beam combining of diode lasers[J]. Optics Letters, 36, 999-1001(2011).

    [10] Liu B, Liu Y, Braiman Y. Coherent beam combining of high-power broad-area laser diode array in CW and pulsed modes[J]. Proceedings of SPIE, 7583, 75830Z(2010).

    [11] Chinn S R. Review of edge-emitting coherent laser arrays[J]. Surface Emitting Semiconductor Lasers & Arrays, 9-70(1993).

    [12] Leshchenko V E. Coherent combining efficiency in tiled and filled aperture approaches[J]. Optics Express, 23, 15944-15970(2015).

    [13] Zhi D, Zhang Z X, Ma Y X et al. Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system[J]. Scientific Reports, 7, 2199(2017).

    [14] Wacks M, Ryan L, Johannsen D et al. The alpha program[J]. Journal of Directed Energy, 1, 275-277(2006).

    [16] Wang L J, Peng H Y, Zhang J. Advance on high power diode laser coupling[J]. Chinese Optics, 8, 517-534(2015).

    [17] Leger J R. External methods of phase locking and coherent beam addition of diode lasers[J]. Surface Emitting Semiconductor Lasers & Arrays, 379-433(1993).

    [18] Nabors C D. Effects of phase errors on coherent emitter arrays[J]. Applied Optics, 33, 2284-2289(1994).

    [19] Botez D. Monolithic phase-locked semiconductor laser arrays[J]. Diode Laser Arrays, 1-71(1994).

    [20] Botez D, Ackley D E. Phase-locked arrays of semiconductor diode lasers[J]. IEEE Circuits and Devices Magazine, 2, 8-17(1986).

    [21] Philipp-Rutz E M. Single laser beam of spatial coherence from an array of GaAs lasers: free-running mode[J]. Journal of Applied Physics, 46, 4552-4556(1975).

    [22] Twu Y, Dienes A, Wang S et al. High power coupled ridge waveguide semiconductor laser arrays[J]. Applied Physics Letters, 45, 709-711(1984).

    [23] Corcoran C J, Rediker R H. Operation of five individual diode lasers as a coherent ensemble by fiber coupling into an external cavity[J]. Applied Physics Letters, 59, 759-761(1991).

    [24] Sanders S, Waarts R, Nam D et al. High power coherent two-dimensional semiconductor laser array[J]. Applied Physics Letters, 64, 1478-1480(1994).

    [25] No K H, Blackwell R J, Herrick R W et al. Monolithic integration of an amplifier and a phase modulator fabricated in a GRINSCH-SQW structure by placing the junction below the quantum well[J]. IEEE Photonics Technology Letters, 5, 990-993(1993).

    [26] Osinski J S, Mehuys D, Welch D F et al. Phased array of high-power, coherent, monolithic flared amplifier master oscillator power amplifiers[J]. Applied Physics Letters, 66, 556-558(1995).

    [27] No K H, Herrick R W, Leung C et al. One dimensional scaling of 100 ridge waveguide amplifiers[J]. IEEE Photonics Technology Letters, 6, 1062-1066(1994).

    [28] Krebs D, Herrick R, No K et al. 22 W coherent GaAlAs amplifier array with 400 emitters[J]. IEEE Photonics Technology Letters, 3, 292-295(1991).

    [29] Levy J L, Roh K. Coherent array of 900 semiconductor laser amplifiers[J]. Proceedings of SPIE, 2382, 58-69(1995).

    [30] Liang W, Yariv A, Kewitsch A et al. Coherent combining of the output of two semiconductor lasers using optical phase-lock loops[J]. Optics Letters, 32, 370-372(2007).

    [31] Grant M, Michie W, Fletcher M. The performance of optical phase-locked loops in the presence of nonnegligible loop propagation delay[J]. Journal of Lightwave Technology, 5, 592-597(1987).

    [32] Ramos R T, Seeds A J. Delay, linewidth and bandwidth limitations in optical phase-locked loop design[J]. Electronics Letters, 26, 389-391(1990).

    [33] Zhang N L, Wang C L, Xiong C et al. 808 nm laser array with wide temperature-locking range[J]. Chinese Journal of Lasers, 50, 0501001(2023).

    [34] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997).

    [35] Yang H Z, Li X Y, Jiang W H. Simulation and analysis of stochastic parallel gradient descent control algorithm for adaptive optics system[J]. Acta Optica Sinica, 27, 1355-1360(2007).

    [36] Huang R K, Chann B, Missaggia L J et al. Coherent combination of slab-coupled optical waveguide lasers[J]. Proceedings of SPIE, 7230, 72301G(2009).

    [37] Montoya J, Augst S J, Creedon K et al. External cavity beam combining of 21 semiconductor lasers using SPGD[J]. Applied Optics, 51, 1724-1728(2012).

    [38] Creedon K J, Redmond S M, Smith G M et al. High efficiency coherent beam combining of semiconductor optical amplifiers[J]. Optics Letters, 37, 5006-5008(2012).

    [39] Schimmel G, Janicot S, Hanna M et al. Coherent beam combining architectures for high power tapered laser arrays[J]. Proceedings of SPIE, 10086, 100860O(2017).

    [40] Albrodt P, Hanna M, Moron F et al. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration[J]. Proceedings of SPIE, 10514, 105140T(2018).

    [41] Albrodt P, Niemeyer M, Crump P et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 27, 27891-27901(2019).

    [42] Zhu H B, Duan X M, Fan S L et al. Scalable structure of coherent polarization beam combining based on tapered diode laser amplifiers[J]. Optics & Laser Technology, 132, 106470(2020).

    [43] Mourikis C, Blume G, Maaßdorf A et al. Coherent beam combining progress on diode lasers and tapered amplifiers at 808 nm[J]. Proceedings of SPIE, 11983, 119830D(2022).

    [44] Hamperl J, Albrodt P, Georges P et al. Compact module for high power coherent beam combining of tapered amplifiers[C], 33-34(2019).

    [45] Albrodt P, Jamal M T, Hansen A K et al. Recent progress in brightness scaling by coherent beam combining of tapered amplifiers for efficient high power frequency doubling[J]. Proceedings of SPIE, 10900, 10900O(2019).

    [46] Liu Q, Janicot S, Georges P et al. Coherent combination of micropulse tapered amplifiers at 828 nm for direct-detection LIDAR applications[J]. Optics Letters, 48, 489-492(2023).

    [47] Vysotsky D V, Napartovich A P. Coherent beam combining in optically coupled laser arrays[J]. Quantum Electronics, 49, 989-1007(2019).

    [48] Ripper J E, Paoli T L. Optical coupling of adjacent stripe-geometry junction lasers[J]. Applied Physics Letters, 17, 371-373(1970).

    [49] Philipp-Rutz E M. Spatially coherent radiation from an array of GaAs lasers[J]. Applied Physics Letters, 26, 475-477(1975).

    [50] Scifres D R, Burnham R D, Streifer W. Phase-locked semiconductor laser array[J]. Applied Physics Letters, 33, 1015-1017(1978).

    [51] Ng S P, Phua P B. Coherent polarization locking of a diode emitter array[J]. Optics Letters, 34, 2042-2044(2009).

    [52] Purnawirman P, Phua P B. Coherent polarization locking of multimode beams in a diode bar[J]. Proceedings of SPIE, 7918, 791815(2011).

    [53] Han J L, Zhang J, Shan X N et al. High-power narrow-linewidth diode laser pump source based on high-efficiency external cavity feedback technology[J]. Chinese Optics Letters, 20, 081401(2022).

    [54] Kouznetsov D, Bisson J F, Shirakawa A et al. Limits of coherent addition of lasers: simple estimate[J]. Optical Review, 12, 445-447(2005).

    [55] Fridman M, Nixon M, Davidson N et al. Passive phase locking of 25 fiber lasers[J]. Optics Letters, 35, 1434-1436(2010).

    [56] Leger J R, Swanson G J, Veldkamp W B. Coherent laser addition using binary phase gratings[J]. Applied Optics, 26, 4391-4399(1987).

    [57] Bloom G, Larat C, Lallier E et al. Passive coherent beam combining of quantum-cascade lasers with a Dammann grating[J]. Optics Letters, 36, 3810-3812(2011).

    [58] Venus G B, Sevian A, Smirnov V I et al. Stable coherent coupling of laser diodes by a volume Bragg grating in photothermorefractive glass[J]. Optics Letters, 31, 1453-1455(2006).

    [59] Bloom G, Larat C, Lallier E et al. Coherent combining of two quantum-cascade lasers in a Michelson cavity[J]. Optics Letters, 35, 1917-1919(2010).

    [60] Schimmel G, Doyen-Moldovan I, Janicot S et al. Rear-side resonator architecture for the passive coherent combining of high-brightness laser diodes[J]. Optics Letters, 41, 950-953(2016).

    [61] Lohmann A W, Silva D E. An interferometer based on the Talbot effect[J]. Optics Communications, 2, 413-415(1971).

    [62] Hassiaoui I, Michel N, Lecomte M et al. In-phase coherent coupling of tapered lasers in an external Talbot cavity[J]. Proceedings of SPIE, 6485, 64850E(2007).

    [63] Li Q, Zhao P F, Guo W R. Amplitude compensation of a diode laser array phase locked with a Talbot cavity[J]. Applied Physics Letters, 89, 231120(2006).

    [64] Li Q, Zhao P F, Guo W R et al. The in-phase mode selection of a high-power diode laser array by a Talbot cavity with an amplitude compensator[J]. Optics Communications, 270, 323-326(2007).

    [65] Zhao P F, Li Q, Guo W et al. In-phase output beam from broad-area diode array using Talbot cavity[J]. Chinese Optics Letters, 5, 284-285(2007).

    [66] Zhao P F, Guo W R, Li Q. Phase compensation of Talbot cavity[J]. High Power Laser and Particle Beams, 19, 19-22(2007).

    [67] Zhao P F, Li Q, Guo W R et al. Phase locking of a high power diode laser array in an external cavity[J]. Journal of Optoelectronics·Laser, 18, 672-674(2007).

    [68] Liu B, Liu Y, Braiman Y. Coherent addition of high power laser diode array with a V-shape external Talbot cavity[J]. Optics Express, 16, 20935-20942(2008).

    [69] Liu B, Braiman Y. Coherent beam combining of high power broad-area laser diode array with near diffraction limited beam quality and high power conversion efficiency[J]. Optics Express, 21, 31218-31228(2013).

    [70] Liu B, Braiman Y. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity[J]. Optics Communications, 414, 202-206(2018).

    [71] Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity[J]. Applied Physics Letters, 86, 201118(2005).

    [72] Corcoran C J, Durville F. Passive coherent combination of a diode laser array with 35 elements[J]. Optics Express, 22, 8420-8425(2014).

    [73] Dan B. High-power coherent GaAs-based monolithic semiconductor lasers[J]. Proceedings of SPIE, 4533, 41-46(2001).

    [74] Welch D F, Cross P S, Scifres D R et al. High-power (cw) in-phase locked “Y” coupled laser arrays[J]. Applied Physics Letters, 49, 1632-1634(1986).

    [75] Zhao Y S, Zhu L. On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers[J]. Optics Express, 20, 6375-6384(2012).

    [76] Zhao Y S, Zhu L. Integrated coherent beam combining of a laser diode mini-bar[J]. Proceedings of SPIE, 8965, 89650F(2014).

    [77] Wu T W, Chang W Z, Galvanauskas A et al. Model for passive coherent beam combining in fiber laser arrays[J]. Optics Express, 17, 19509-19518(2009).

    [78] Zhao Y S, Zhu Y Y, Zhu L. Hybrid integration for coherent laser beam combining on silicon photonics platform[C], 633-634(2017).

    [79] Zhu Y Y, Zhu L. Integrated single frequency, high power laser sources based on monolithic and hybrid coherent beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 8300908(2018).

    [80] Zhu Y Y, Zeng S W, Zhao Y S et al. Hybrid integration of active semiconductor devices with passive micro/nano optical structures for emerging applications[J]. Proceedings of SPIE, 11089, 1108908(2019).

    [81] Zeng S W, Zhao X L, Zhu Y Y et al. Watt-level beam combined diode laser systems in a chip-scale hybrid photonic platform[J]. Optics Express, 30, 23815-23827(2022).

    [82] Jia Z, Wang L, Zhang J et al. Phase-locked array of quantum cascade lasers with an intracavity spatial filter[J]. Applied Physics Letters, 111, 061108(2017).

    [83] Yan Y F, Liu Y, Zhang H Y et al. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 10, 444-455(2022).

    [84] Wang X F, Lan T, Ruan R J et al. Dynamics of mutual injection phase-locking of laser diode array with interference effect[J]. Optics Communications, 522, 128616(2022).

    [85] Chen M R, Jiang L, Mao H M et al. High-Precision Static Aberration Correction Method of SPGD Algorithm[J]. Acta Optica Sinica, 43, 0511001(2023).

    [86] Jiang M, Su R T, Zhang Z X et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Applied Optics, 56, 4255-4260(2017).

    [87] Hou T Y, An Y, Chang Q et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 7, e59(2019).

    Chao Zhang, Xuechun Lin, Pengfei Zhao, Zhiyong Dong, Nan Wang, Yingying Yang, Haijuan Yu. Coherent Beam Combining Technology for Diode Lasers (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114007
    Download Citation