• Advanced Photonics
  • Vol. 5, Issue 3, 033001 (2023)
Fan Yang1, Mikhail Y. Shalaginov1, Hung-I Lin1, Sensong An1, Anu Agarwal1, Hualiang Zhang2, Clara Rivero-Baleine3, Tian Gu1、4、*, and Juejun Hu1、4、*
Author Affiliations
  • 1Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, Massachusetts, United States
  • 2University of Massachusetts Lowell, Department of Electrical and Computer Engineering, Lowell, Massachusetts, United States
  • 3Lockheed Martin Corporation, Orlando, Florida, United States
  • 4Massachusetts Institute of Technology, Materials Research Laboratory, Cambridge, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.5.3.033001 Cite this Article Set citation alerts
    Fan Yang, Mikhail Y. Shalaginov, Hung-I Lin, Sensong An, Anu Agarwal, Hualiang Zhang, Clara Rivero-Baleine, Tian Gu, Juejun Hu. Wide field-of-view metalens: a tutorial[J]. Advanced Photonics, 2023, 5(3): 033001 Copy Citation Text show less
    References

    [1] S. Gao et al. Review on panoramic imaging and its applications in scene understanding(2022).

    [2] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [3] X. Ni et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

    [4] A. Pors, S. I. Bozhevolnyi. Efficient and broadband quarter-wave plates by gap-plasmon resonators. Opt. Express, 21, 2942-2952(2013).

    [5] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [6] F. Capasso. The future and promise of flat optics: a personal perspective. Nanophotonics, 7, 953-957(2018).

    [7] K. Achouri, C. Caloz. Design, concepts, and applications of electromagnetic metasurfaces. Nanophotonics, 7, 1095-1116(2018).

    [8] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [9] S. D. Campbell et al. Review of numerical optimization techniques for meta-device design [Invited]. Opt. Mater. Express, 9, 1842-1863(2019).

    [10] A. M. Shaltout et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science, 365, 374-377(2019).

    [11] P. Lalanne et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett., 23, 1081-1083(1998).

    [12] S. W. Moon et al. Tutorial on metalenses for advanced flat optics: design, fabrication, and critical considerations. J. Appl. Phys., 131, 091101(2022).

    [13] Y. He, B. Song, J. Tang. Optical metalenses: fundamentals, dispersion manipulation, and applications. Front. Optoelectron., 15, 24(2022).

    [14] N. Ullah, R. Zhao, L. Huang. Recent advancement in optical metasurface: fundament to application. Micromachines, 13, 1025(2022).

    [15] H. Ren et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun., 13, 4183(2022).

    [16] G. Yoon et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun., 11, 2268(2020).

    [17] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev., 11, 1600295(2017).

    [18] R. Paniagua-Domínguez et al. A metalens with a near-unity numerical aperture. Nano Lett., 18, 2124-2132(2018).

    [19] F. Aieta et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express, 21, 31530-31539(2013).

    [20] F. Aieta et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [21] H. Liang et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett., 18, 4460-4466(2018).

    [22] B. Groever et al. Substrate aberration and correction for meta-lens imaging: an analytical approach. Appl. Opt., 57, 2973-2980(2018).

    [23] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [24] S. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [25] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [26] Y. Zhou et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett., 18, 7529-7537(2018).

    [27] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [28] F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7, 624-631(2020).

    [29] H. Chung, O. D. Miller. High-NA achromatic metalenses by inverse design. Opt. Express, 28, 6945-6965(2020).

    [30] A. Ndao et al. Octave bandwidth photonic fishnet-achromatic-metalens. Nat. Commun., 11, 3205(2020).

    [31] F. Balli et al. A hybrid achromatic metalens. Nat. Commun., 11, 3892(2020).

    [32] J. Kim et al. Scalably manufactured high-index atomic layer-polymer hybrid metasurfaces for high-efficiency virtual reality metaoptics in the visible(2022).

    [33] J. Engelberg, U. Levy. Standardizing flat lens characterization. Nat. Photonics, 16, 171-173(2022).

    [34] Optics and optical instruments—veiling glare of image forming systems: definitions and methods of measurement.

    [35] Z. Peng et al. A real-time fisheye video correction method based on Android smart-phone GPU. Optik-Stuttg, 220, 165108(2020).

    [36] Z. Ma et al. Volumetric imaging efficiency: the fundamental limit to compactness of imaging systems. Opt. Express, 29, 3173-3192(2021).

    [37] P. Milojkovic, J. N. Mait. Space-bandwidth scaling for wide field-of-view imaging. Appl. Opt., 51, A36-A47(2012).

    [38] A. W. Lohmann. Scaling laws for lens systems. Appl. Opt., 28, 4996-4998(1989).

    [39] Y. Shimizu. Wide angle fisheye lens(1973).

    [40] M. Y. Shalaginov et al. Single-element diffraction-limited fisheye metalens. Nano Lett., 20, 7429-7437(2020).

    [41] A. Martins et al. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073-2079(2020).

    [42] A. Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [43] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902-4907(2017).

    [44] Z. Lin et al. Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration. Appl. Phys. Lett., 118, 041104(2021).

    [45]

    [46] S. T. Bobrov. Design of a wide field diffractive landscape lens: comment. Appl. Opt., 30, 2674(1991).

    [47] S. T. Bobrov, G. T. Greishkh. High resolution projection lenses using diffractive elements. Avtometriya, 6, 3-7(1985).

    [48] D. A. Buralli, G. M. Morris. Design of a wide field diffractive landscape lens. Appl. Opt., 28, 3950-3959(1989).

    [49] T. Grulois et al. Extra-thin infrared camera for low-cost surveillance applications. Opt. Lett., 39, 3169-3172(2014).

    [50] A. Kalvach, Z. Szabó. Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B, 33, A66-A71(2016).

    [51] J. Engelberg et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361-370(2020).

    [52] M. Y. Shalaginov et al. A single-layer panoramic metalens with > 170° diffraction-limited field of view(2019).

    [53] L. Zhang et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun., 9, 1481(2018).

    [54] P. Su et al. Large-area optical metasurface fabrication using nanostencil lithography. Opt. Lett., 46, 2324(2021).

    [55] F. Zhang et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater., 33, 2008157(2021).

    [56] C.-Y. Fan, C.-P. Lin, G.-D. J. Su. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci. Rep., 10, 15677(2020).

    [57] B. Fu et al. Single-layer metalens for achromatic focusing with wide field of view in the visible range. J. Phys. D Appl. Phys., 55, 235106(2022).

    [58] F. Yang et al. Design of broadband and wide-field-of-view metalenses. Opt. Lett., 46, 5735(2021).

    [59] F. Yang et al. Understanding wide field-of-view flat lenses: an analytical solution [Invited]. Chin. Opt. Lett., 21, 023601(2023).

    [60] E. Lassalle et al. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection. ACS Photonics, 8, 1457-1468(2021).

    [61] H. Liang et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 6, 1461-1470(2019).

    [62] X. G. Luo et al. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11, 1-20(2022).

    [63] M. Pu et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express, 25, 31471-31477(2017).

    [64] C. Chen et al. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Adv., 10, 115213(2020).

    [65] W. P. Zhang et al. Numerical simulation research of wide-angle beam steering based on catenary shaped ultrathin metalens. Opt. Commun., 474, 126085(2020).

    [66] G. Zhou et al. Metasurface-based Fourier lens fed by compact plasmonic optical antennas for wide-angle beam steering. Opt. Express, 30, 21918-21930(2022).

    [67] N. Zhang et al. Design of all-dielectric long-wave infrared wide-angle metalens. Chin. Phys. B, 31, 074212(2021).

    [68] A. Martins et al. Correction of aberrations via polarization in single layer metalenses. Adv. Opt. Mater., 10, 2102555(2022).

    [69] A. Arbabi et al. Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique. Sci. Rep., 10, 7124(2020).

    [70] D. Sell et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett., 17, 3752-3757(2017).

    [71] Z. Huang et al. Achromatic and wide-field metalens in the visible region. Opt. Express, 29, 13542-13551(2021).

    [72] A. Martins et al. Fundamental limits and design principles of doublet metalenses. Nanophotonics, 11, 1187-1194(2022).

    [73] D. Tang et al. Achromatic metasurface doublet with a wide incident angle for light focusing. Opt. Express, 28, 12209-12218(2020).

    [74] B. Lee, C. Kim, S.-J. Kim. Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations. Opt. Express, 28, 18059-18076(2020).

    [75] C. Wang et al. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle. Opt. Express, 29, 9991-9999(2021).

    [76] S. Shrestha, A. Overvig, N. Yu. Multi-element meta-lens systems for imaging, FF2B.8(2019).

    [77] H. Kwon et al. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 121, 173004(2018).

    [78] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photonics Rev., 5, 308-321(2011).

    [79] R. E. Christiansen, O. Sigmund. Inverse design in photonics by topology optimization: tutorial. J. Opt. Soc. Am. B, 38, 496-509(2021).

    [80] M. M. R. Elsawy et al. Numerical optimization methods for metasurfaces. Laser Photonics Rev., 14, 1900445(2020).

    [81] W. Li et al. Topology optimization of photonic and phononic crystals and metamaterials: a review. Adv. Theory Simul., 2, 1900017(2019).

    [82] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [83] D. Sell et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett., 17, 3752-3757(2017).

    [84] E. Wang et al. Robust design of topology-optimized metasurfaces. Opt. Mater. Express, 9, 469-482(2019).

    [85] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 48(2019).

    [86] M. Xu et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase. Opt. Express, 29, 10181-10191(2021).

    [87] S. G. Johnson, Z. Lin. Overlapping domains for topology optimization of large-area metasurfaces. Opt. Express, 27, 32445-32453(2019).

    [88] R. Pestourie et al. Topology optimization of freeform large-area metasurfaces. Opt. Express, 27, 15765-15775(2019).

    [89] A. Harpøth et al. Topology optimization and fabrication of photonic crystal structures. Opt. Express, 12, 1996-2001(2004).

    [90] J. S. Jensen, O. Sigmund. Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J. Opt. Soc. Am. B, 22, 1191-1198(2005).

    [91] A. M. Hammond et al. Photonic topology optimization with semiconductor-foundry design-rule constraints. Opt. Express, 29, 23916-23938(2021).

    [92] L. F. Frellsen et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 24, 16866-16873(2016).

    [93] R. E. Christiansen et al. Inverse design of nanoparticles for enhanced Raman scattering. Opt. Express, 28, 4444-4462(2020).

    [94] Y. Pan et al. Topology optimization of surface-enhanced Raman scattering substrates. Appl. Phys. Lett., 119, 061601(2021).

    [95] Z. Lin et al. Topology-optimized multilayered metaoptics. Phys. Rev. Appl., 9, 044030(2018).

    [96] H. Yılmaz et al. Customizing the angular memory effect for scattering media. Phys. Rev. X, 11, 031010(2021).

    [97] S. Li, C. W. Hsu. Thickness bound for nonlocal wide-field-of-view metalenses(2022).

    [98] S. Banerji et al. Ultra-thin near infrared camera enabled by a flat multi-level diffractive lens. Opt. Lett., 44, 5450-5452(2019).

    [99] C. Hao et al. Single-layer aberration-compensated flat lens for robust wide-angle imaging. Laser Photonics Rev., 14, 2000017(2020).

    [100] Y. M. Song et al. Digital cameras with designs inspired by the arthropod eye. Nature, 497, 95-99(2013).

    [101] D. Keum et al. Xenos peckii vision inspires an ultrathin digital camera. Light Sci. Appl., 7, 80(2018).

    [102] K. Kim et al. Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging. Light Sci. Appl., 9, 28(2020).

    [103] A. Brückner et al. Multi-aperture optics for wafer-level cameras. J. Micro/Nanolithogr. MEMS MOEMS, 10, 043010(2011).

    [104] A. Toulouse et al. Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design. Opt. Express, 30, 707-720(2022).

    [105] J. Chen et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431-437(2022).

    [106] Z. Zang et al. Planar multi-aperture fish-eye lens using metagrating(2021).

    [107] B. Xu et al. Metalens-integrated compact imaging devices for wide-field microscopy. Adv. Photonics, 2, 066004(2020).

    [108] X. Ye et al. Chip-scale metalens microscope for wide-field and depth-of-field imaging. Adv. Photonics, 4, 046006(2022).

    [109] D. Radtke, U. D. Zeitner. Laser-lithography on non-planar surfaces. Opt. Express, 15, 1167-1174(2007).

    [110] J. Chang, Q. Zhou, A. Zettl. Facile electron-beam lithography technique for irregular and fragile substrates. Appl. Phys. Lett., 105, 173109(2014).

    [111] D. K. Nikolov et al. Metaform optics: bridging nanophotonics and freeform optics. Sci. Adv., 7, eabe5112(2021).

    [112] S. M. Kamali et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun., 7, 11618(2016).

    [113] S. Geiger et al. Flexible and stretchable photonics: the next stretch of opportunities. ACS Photonics, 7, 2618-2635(2020).

    [114] J. Hu et al. Flexible integrated photonics: where materials, mechanics and optics meet [Invited]. Opt. Mater. Express, 3, 1313-1331(2013).

    [115] J. Burch et al. Conformable holographic metasurfaces. Sci. Rep., 7, 4520(2017).

    [116] N. Bokor, N. Davidson. Aberration-free imaging with an aplanatic curved diffractive element. Appl. Opt., 40, 5825-5829(2001).

    [117] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2000).

    [118] E. J. Tremblay et al. Design and scaling of monocentric multiscale imagers. Appl. Opt., 51, 4691-4702(2012).

    [119] I. Stamenov, I. P. Agurok, J. E. Ford. Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs. Appl. Opt., 51, 7648-7661(2012).

    [120] G.-D. J. Su, W.-L. Liang. Wide-angle and ultrathin camera module using a curved hexagonal microlens array and all spherical surfaces. Appl. Opt., 53, H121-H128(2014).

    [121] T. Zentgraf et al. Plasmonic Luneburg and Eaton lenses. Nat. Nanotechnol., 6, 151-155(2011).

    [122] J. Hunt et al. Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express, 20, 1706-1713(2012).

    [123] Y. Y. Zhao et al. Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev., 10, 665-672(2016).

    [124] K. Huang et al. The optical advantages of curved focal plane arrays. Opt. Express, 16, 4965-4971(2008).

    [125] A. K. Bhowmik. 35-1: invited paper: real-time 3D-sensing technologies and applications in interactive and immersive devices, 440-443(2016).

    [126] Metalenz launches Orion, the world’s simplest, most compact dot pattern projector.

    [127] Y. Ni et al. Metasurface for structured light projection over 120° field of view. Nano Lett., 20, 6719-6724(2020).

    [128] Z. Li et al. Full-space cloud of random points with a scrambling metasurface. Light Sci. Appl., 7, 63(2018).

    [129] A. Hermerschmidt et al. Inverse design and demonstration of high-performance wide-angle diffractive optical elements. Opt. Express, 28, 22321-22333(2020).

    [130] G. Kim et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat. Commun., 13, 5920(2022).

    [131] Y. Liu et al. Meta-objective with sub-micrometer resolution for microendoscopes. Photonics Res., 9, 106-115(2021).

    [132] B. Vucelic et al. The Aer-O-Scope: proof of concept of a pneumatic, skill-independent, self-propelling, self-navigating colonoscope. Gastroenterology, 130, 672-677(2006).

    [133] C.-W. Chiang et al. Dual view capsule endoscopic lens design. Opt. Express, 23, A15-A26(2015).

    [134] D. Kim, S. Chang, H. S. Kwon. Wide field-of-view, high-resolution endoscopic lens design with low f-number for disposable endoscopy. Photonics, 8, 89(2021).

    [135] H. Pahlevaninezhad et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540-547(2018).

    [136] M. Pahlevaninezhad et al. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nat. Photonics, 16, 203-211(2022).

    [137] P. Lin et al. Coherent Raman scattering imaging with a near-infrared achromatic metalens. APL Photonics, 6, 096107(2021).

    [138] Y. Li et al. Theoretical design of miniaturized two-photon STED micro-endoscopic probe based on double-cladding optical fiber and dual-wavelength confocal metalens. Optik, 258, 168907(2022).

    [139] F. Piccirillo et al. (INVITED) Miniaturized lenses integrated on optical fibers: towards a new milestone along the lab-on-fiber technology roadmap. Results Opt., 6, 100203(2022).

    [140] J. Yang et al. Photonic crystal fiber metalens. Nanophotonics, 8, 443-449(2019).

    [141] W. Hadibrata et al. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography. Nano Lett., 21, 2422-2428(2021).

    [142] Y. Li et al. Single-layer multitasking vortex-metalens for ultra-compact two-photon excitation STED endomicroscopy imaging. Opt. Express, 29, 3795-3807(2021).

    [143] J. E. Froech et al. Real time full-color imaging in a meta-optical fiber endoscope(2022).

    [144] N. Xie et al. Large field-of-view short-wave infrared metalens for scanning fiber endoscopy. J. Biomed. Opt., 28, 094802(2023).

    [145] M. Pan et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci. Appl., 11, 195(2022).

    [146] S. Colburn, A. Majumdar. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction. ACS Photonics, 7, 1529-1536(2020).

    [147] C. Jin et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging. Adv. Photonics, 1, 036001(2019).

    [148] A. L. Holsteen et al. A light-field metasurface for high-resolution single-particle tracking. Nano Lett., 19, 2267-2271(2019).

    [149] E. Edrei et al. Spectrally gated microscopy (SGM) with meta optics for parallel three-dimensional imaging. ACS Nano, 15, 17375-17383(2021).

    [150] Y. Luo et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett., 21, 5133-5142(2021).

    [151] G. Y. Lee et al. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [152] E. Bayati et al. Design of achromatic augmented reality visors based on composite metasurfaces. Appl. Opt., 60, 844-850(2021).

    [153] S. Moon et al. Augmented reality near-eye display using Pancharatnam-Berry phase lenses. Sci. Rep., 9, 6616(2019).

    [154] S. Lan et al. Metasurfaces for near-eye augmented reality. ACS Photonics, 6, 864-870(2019).

    [155] I. Kim et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [156] J. Sun et al. Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 20, 8201115(2014).

    [157] X. Sun et al. Si photonics for practical LiDAR solutions. Appl. Sci., 9, 4225(2019).

    [158] J. Park et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2020).

    [159] S. Q. Li et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [160] S. Kim et al. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics, 11, 2719-2726(2022).

    [161] P. C. Wu et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun., 10, 3654(2019).

    [162] Y. Zhang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).

    [163] T. Gu et al. Active metasurfaces: lighting the path to commercial success(2022).

    [164] A. Kawasaki et al. Demonstration of a new optical scanner using silicon photonics integrated circuit. Opt. Express, 27, 19555-19561(2019).

    [165] S. J. Spector. Review of lens-assisted beam steering methods. J. Opt. Microsyst., 2, 011003(2022).

    [166] J. J. Lopez et al. Planar-lens enabled beam steering for chip-scale LIDAR, SM3I.1(2018).

    [167] C. Li et al. Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for LiDAR application. Opt. Express, 27, 32970-32983(2019).

    [168] Y.-C. Chang et al. 2D beam steerer based on metalens on silicon photonics. Opt. Express, 29, 854-864(2021).

    [169] Y. Liu et al. Silicon-based broadband metalens for wide-angle optical beam steering, 1-2(2021).

    [170] W.-B. Lee et al. Metasurface doublet-integrated bidirectional grating antenna enabling enhanced wavelength-tuned beam steering. Photonics Res., 10, 248-255(2022).

    [171] S. Kim et al. Luneburg lens for wide-angle chip-scale optical beam steering, SF3N.7(2019).

    [172] Y. Guo et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater., 6, 1800592(2018).

    [173] S. M. Kamali, E. Arbabi, A. Faraon. Metasurface-based compact light engine for AR headsets. Proc. SPIE, 11040, 1104002(2019).

    [174] L. Huang et al. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens. Opt. Mater. Express, 11, 2907-2914(2021).

    [175] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [176] J. Engelberg, U. Levy. Achromatic flat lens performance limits. Optica, 8, 834-845(2021).

    [177] K. Shastri, F. Monticone. Bandwidth bounds for wide-field-of-view dispersion-engineered achromatic metalenses. EPJ Appl. Metamater., 9, 16(2022).

    [178] Z. Li et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv., 7, 4458-4485(2021).

    [179] S. An et al. Multifunctional metasurface design with a generative adversarial network. Adv. Opt. Mater., 9, 2001433(2021).

    [180] S. An et al. Deep learning modeling approach for metasurfaces with high degrees of freedom. Opt. Express, 28, 31932-31942(2020).

    [181] S. An et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196-3207(2019).

    [182] S. An et al. Deep convolutional neural networks to predict mutual coupling effects in metasurfaces. Adv. Opt. Mater., 10, 2102113(2022).

    [183] Y. Liu et al. Broadband behavior of quadratic metalenses with a wide field of view(2022).

    [184] M. Shalaginov, D. H. Werner, S. D. Campbell, L. Kang et al. Dancing angels on the point of a needle: nanofabrication for subwavelength optics. Nanoantennas and Plasmonics: Modelling, Design and Fabrication, 381-443(2020).

    [185] A. Arbabi et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [186] W. T. Chen et al. Broadband achromatic metasurface-refractive optics. Nano Lett., 18, 7801-7808(2018).

    [187] K.-H. Shih, C. K. Renshaw. Broadband metasurface aberration correctors for hybrid meta/refractive MWIR lenses. Opt. Express, 30, 28438-28453(2022).

    [188] S. An et al. Deep neural network enabled active metasurface embedded design. Nanophotonics, 11, 4149-4158(2022).

    [189] A comprehensive list of 3D sensors commonly leveraged in ROS development.

    [190] C. Zhang et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response. ACS Nano, 14, 1418-1426(2020).

    [191] S. Walia et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev., 2, 011303(2015).

    [192] Y.-P. Chen et al. Fabrication of concave gratings by curved surface UV-nanoimprint lithography. J. Vac. Sci. Technol. B, 26, 1690-1695(2008).

    [193] O. Quevedo-Teruel et al. Roadmap on metasurfaces. J. Opt., 21, 073002(2019).

    [194] E. Mikheeva et al. Space and time modulations of light with metasurfaces: recent progress and future prospects. ACS Photonics, 9, 1458-1482(2022).

    [195] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [196] C. U. Hail et al. Optical metasurfaces: evolving from passive to adaptive. Adv. Opt. Mater., 7, 1801786(2019).

    [197] M. Y. Shalaginov et al. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 9, 3505-3534(2020).

    [198] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [199] L. Kang, R. P. Jenkins, D. H. Werner. Recent progress in active optical metasurfaces. Adv. Opt. Mater., 7, 1801813(2019).

    [200] A. Nemati et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 180009(2018).

    [201] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Progr. Phys., 79, 076401(2016).

    [202] T. Cui, B. Bai, H. B. Sun. Tunable metasurfaces based on active materials. Adv. Funct. Mater., 29, 1806692(2019).

    [203] T. Badloe et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv. Photonics Res., 2, 2000205(2021).

    [204] Y. Che et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics, 9, 4407-4431(2020).

    [205] J. Yang et al. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Progr. Phys., 85, 036101(2022).

    [206] S. C. Malek et al. Active nonlocal metasurfaces. Nanophotonics, 10, 655-665(2021).

    [207] A. Li, S. Singh, D. Sievenpiper. Metasurfaces and their applications. Nanophotonics, 7, 989-1011(2018).

    [208] K. Du et al. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 11, 1761-1781(2022).

    [209] F. Yang et al. Reconfigurable parfocal zoom metalens. Adv. Opt. Mater., 10, 2200721(2022).

    [210] M. Y. Shalaginov et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [211] Y. Zhang et al. Broadband transparent optical phase change materials, JTh5C.4(2017).

    [212] Q. Zhang et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett., 43, 94-97(2018).

    [213] Y. Zhang et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [214] F. Yue et al. Nonlinear mid-infrared metasurface based on a phase-change material. Laser Photonics Rev., 15, 2000373(2021).

    [215] G. Arya et al. End-to-end optimization of metasurfaces for imaging with compressed sensing(2022).

    [216] V. R. Shrestha et al. Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator. Sci. Rep., 10, 5377(2020).

    [217] Z. Lin et al. End-to-end nanophotonic inverse design for imaging and polarimetry. Nanophotonics, 10, 1177-1187(2021).

    [218] Z. Lin et al. End-to-end metasurface inverse design for single-shot multi-channel imaging. Opt. Express, 30, 28358-28370(2022).

    [219] F. Heide et al. High-quality computational imaging through simple lenses. ACM Trans. Graph., 32, 149(2013).

    [220] E. Tseng et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    Fan Yang, Mikhail Y. Shalaginov, Hung-I Lin, Sensong An, Anu Agarwal, Hualiang Zhang, Clara Rivero-Baleine, Tian Gu, Juejun Hu. Wide field-of-view metalens: a tutorial[J]. Advanced Photonics, 2023, 5(3): 033001
    Download Citation