• Photonics Research
  • Vol. 9, Issue 3, 299 (2021)
A. Kafar1、2、*, A. Sakaki3, R. Ishii1, S. Stanczyk2、4, K. Gibasiewicz2, Y. Matsuda1, D. Schiavon2、4, S. Grzanka2、4, T. Suski2, P. Perlin2、4, M. Funato1, and Y. Kawakami1
Author Affiliations
  • 1Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
  • 2Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland
  • 3Nichia Corporation, Anan, Tokushima 774-8601, Japan
  • 4TopGaN Ltd., Sokolowska 29/37, 01-142 Warsaw, Poland
  • show less
    DOI: 10.1364/PRJ.411701 Cite this Article Set citation alerts
    A. Kafar, A. Sakaki, R. Ishii, S. Stanczyk, K. Gibasiewicz, Y. Matsuda, D. Schiavon, S. Grzanka, T. Suski, P. Perlin, M. Funato, Y. Kawakami. Influence of substrate misorientation on the emission and waveguiding properties of a blue (In,Al,Ga)N laser-like structure studied by synchrotron radiation microbeam X-ray diffraction[J]. Photonics Research, 2021, 9(3): 299 Copy Citation Text show less
    References

    [1] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys., 28, L2112-L2114(1989).

    [2] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa. Thermal annealing effects on P-type Mg-doped GaN films. Jpn. J. Appl. Phys., 31, L139-L142(1992).

    [3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto. InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys., 35, L74-L76(1996).

    [4] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai. White light emitting diodes with super-high luminous efficacy. J. Phys. D, 43, 354002(2010).

    [5] T. Taki, M. Strassburg. Review—visible LEDs: more than efficient light. ECS J. Solid State Sci. Technol., 9, 015017(2020).

    [6] Y. Nakatsu, Y. Nagao, K. Kozuru, T. Hirao, E. Okahisa, S. Masui, T. Yanamoto, S. Nagahama. High-efficiency blue and green laser diodes for laser displays. Proc. SPIE, 10918, 109181D(2019).

    [7] U. Strauß, T. Hager, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, A. Avramescu. Recent advances in c-plane GaN visible lasers. Proc. SPIE, 8986, 89861L(2014).

    [8] M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, K. Nakamura, S. Takigawa, T. Katayama, T. Tanaka. Record-breaking high-power InGaN-based laser-diodes using novel thick-waveguide structure. International Semiconductor Laser Conference (ISLC), 1-2(2016).

    [9] P. M. Pattison, J. Y. Tsao, M. R. Krames. Light-emitting diode technology status and directions: opportunities for horticultural lighting. Acta Hortic., 1134, 413-426(2016).

    [10] C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, S. P. DenBaars. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Opt. Express, 25, 17480-17487(2017).

    [11] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clocks. Rev. Mod. Phys., 87, 637-701(2015).

    [12] H. König, M. Ali, W. Bergbauer, J. Brückner, G. Bruederl, C. Eichler, S. Gerhard, U. Heine, A. Lell, L. Nähle, M. Peter, J. Ristic, G. Rossbach, A. Somers, B. Stojetz, S. Tautz, J. Wagner, T. Wurm, U. Strauss, M. Baumann, A. Balck, V. Krause. Visible GaN laser diodes: from lowest thresholds to highest power levels. Proc. SPIE, 10939, 109390C(2019).

    [13] L. Y. Kuritzky, C. Weisbuch, J. S. Speck. Prospects for 100% wall-plug efficient III-nitride LEDs. Opt. Express, 26, 16600-16608(2018).

    [14] S. M. Islam, K. Lee, J. Verma, V. Protasenko, S. Rouvimov, S. Bharadwaj, H. Xing, D. Jena. MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl. Phys. Lett., 110, 041108(2017).

    [15] Z. Zhang, M. Kushimoto, T. Sakai, N. Sugiyama, L. J. Schowalter, C. Sasaoka, H. Amano. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl. Phys. Express, 12, 124003(2019).

    [16] Z. Bi, T. Lu, J. Colvin, E. Sjögren, N. Vainorius, A. Gustafsson, J. Johansson, R. Timm, F. Lenrick, R. Wallenberg, B. Monemar, L. Samuelson. Realization of ultrahigh quality InGaN platelets to be used as relaxed templates for red micro-LEDs. ACS Appl. Mater. Interfaces, 12, 17845-17851(2020).

    [17] K. H. Li, Y. F. Cheung, W. Jin, W. Y. Fu, A. T. L. Lee, S. C. Tan, S. Y. Hui, H. W. Choi. InGaN RGB light-emitting diodes with monolithically integrated photodetectors for stabilizing color chromaticity. IEEE Trans. Ind. Electron., 67, 5154-5160(2020).

    [18] M. Wei, K. Houser, A. David, M. Krames. Colour gamut size and shape influence colour preference. Lighting Res. Technol., 49, 992-1014(2017).

    [19] T. J. Slight, S. Stanczyk, S. Watson, A. Yadav, S. Grzanka, E. Rafailov, P. Perlin, S. P. Najda, M. Leszczyński, S. Gwyn, A. E. Kelly. Continuous-wave operation of (Al,In)GaN distributed-feedback laser diodes with high-order notched gratings. Appl. Phys. Express, 11, 112701(2018).

    [20] G. B. Stephenson, J. A. Eastman, C. Thompson, O. Auciello, L. J. Thompson, A. Munkholm, P. Fini, S. P. DenBaars, J. S. Speck. Observation of growth modes during metal-organic chemical vapor deposition of GaN. Appl. Phys. Lett., 74, 3326-3328(1999).

    [21] R. A. Oliver, M. J. Kappers, C. J. Humphreys, G. A. D. Briggs. Growth modes in heteroepitaxy of InGaN on GaN. J. Appl. Phys., 97, 013707(2005).

    [22] P. A. Grudowski, A. L. Holmes, C. J. Eiting, R. D. Dupuis. The effect of substrate misorientation on the photoluminescence properties of GaN grown on sapphire by metalorganic chemical vapor deposition. Appl. Phys. Lett., 69, 3626-3628(1996).

    [23] T. Yuasa, Y. Ueta, Y. Tsuda, A. Ogawa, M. Taneya, K. Takao. Effect of slight misorientation of sapphire substrate on metalorganic chemical vapor deposition growth of GaN. Jpn. J. Appl. Phys., 38, L703-L705(1999).

    [24] D. Lu, D. I. Florescu, D. S. Lee, V. Merai, A. Parekh, J. C. Ramer, S. P. Guo, E. Armour. Advanced characterization studies of sapphire substrate misorientation effects on GaN-based LED device development. Phys. Status Solidi A, 200, 71-74(2003).

    [25] C. Sasaoka, F. Miyasaka, T. Koi, M. Kobayashi, Y. Murase, Y. Ando, A. A. Yamaguchi. Surface morphologies and optical properties of Si doped InGaN multi-quantum-well grown on vicinal bulk GaN(0001) substrates. Jpn. J. Appl. Phys., 52, 115601(2013).

    [26] J. L. Weyher, S. Müller, I. Grzegory, S. Porowski. Chemical polishing of bulk and epitaxial GaN. J. Cryst. Growth, 182, 17-22(1997).

    [27] P. R. Tavernier, T. Margalith, L. A. Coldren, S. P. DenBaars, D. R. Clarke. Chemical mechanical polishing of gallium nitride. Electrochem. Solid-State Lett., 5, G61(2002).

    [28] A. Tian, J. Liu, L. Zhang, L. Jiang, M. Ikeda, S. Zhang, D. Li, P. Wen, Y. Cheng, X. Fan, H. Yang. Significant increase of quantum efficiency of green InGaN quantum well by realizing step-flow growth. Appl. Phys. Lett., 111, 112102(2017).

    [29] T. Suski, E. Litwin-Staszewska, R. Piotrzkowski, R. Czernecki, M. Krysko, S. Grzanka, G. Nowak, G. Franssen, L. H. Dmowski, M. Leszczynski, P. Perlin, B. Łucznik, I. Grzegory, R. Jakieła. Substrate misorientation induced strong increase in the hole concentration in Mg doped GaN grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett., 93, 172117(2008).

    [30] L. Jiang, J. Liu, A. Tian, X. Ren, S. Huang, W. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, H. Yang. Influence of substrate misorientation on carbon impurity incorporation and electrical properties of p-GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Express, 12, 055503(2019).

    [31] M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, T. Suski. Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers. Cryst. Res. Technol., 47, 321-328(2012).

    [32] S. Keller, C. S. Suh, N. A. Fichtenbaum, M. Furukawa, R. Chu, Z. Chen, K. Vijayraghavan, S. Rajan, S. P. DenBaars, J. S. Speck, U. K. Mishra. Influence of the substrate misorientation on the properties of N-polar InGaN/GaN and AlGaN/GaN heterostructures. J. Appl. Phys., 104, 093510(2008).

    [33] K. Shojiki, T. Hanada, T. Shimada, Y. Liu, R. Katayama, T. Matsuoka. Tilted domain and indium content of InGaN layer on m-plane GaN substrate grown by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys., 51, 04DH01(2012).

    [34] M. Sarzyński, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagała, R. Czernecki, J. Plesiewicz, J. Pawłowska, S. P. Najda, M. Boćkowski, P. Perlin, M. Leszczyński. Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning. Appl. Phys. Express, 5, 021001(2012).

    [35] P. A. Dróżdż, M. Sarzyński, J. Z. Domagała, E. Grzanka, S. Grzanka, R. Czernecki, Ł. Marona, K. P. Korona, T. Suski. Monolithic cyan–violet InGaN/GaN LED array. Phys. Status Solidi A, 214, 1600815(2017).

    [36] A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, P. Perlin. Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate. Opt. Express, 24, 9673-9682(2016).

    [37] A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, P. Perlin. InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter. Photon. Res., 5, A30-A34(2017).

    [38] A. Kafar, R. Ishii, K. Gibasiewicz, Y. Matsuda, S. Stanczyk, D. Schiavon, S. Grzanka, M. Tano, A. Sakaki, T. Suski, P. Perlin, M. Funato, Y. Kawakami. Above 25 nm emission wavelength shift in blue-violet InGaN quantum wells induced by GaN substrate misorientation profiling: towards broad-band superluminescent diodes. Opt. Express, 28, 22524-22539(2020).

    [39] A. Sakaki, M. Funato, T. Kawamura, J. Araki, Y. Kawakami. Synchrotron radiation microbeam X-ray diffraction for nondestructive assessments of local structural properties of faceted InGaN/GaN quantum wells. Appl. Phys. Express, 11, 031001(2018).

    [40] Y. H. Huang, C. L. Cheng, T. T. Chen, Y. F. Chen, K. T. Tsen. Studies of Stokes shift in InxGa1−xN alloys. J. Appl. Phys., 101, 103521(2007).

    [41] M. Hayakawa, Y. Hayashi, S. Ichikawa, M. Funato, Y. Kawakami. Enhanced radiative recombination probability in AlGaN quantum wires on (0001) vicinal surface. Proc. SPIE, 9926, 99260S(2016).

    [42] I. Bryan, Z. Bryan, S. Mita, A. Rice, L. Hussey, C. Shelton, J. Tweedie, J.-P. Maria, R. Collazo, Z. Sitar. The role of surface kinetics on composition and quality of AlGaN. J. Cryst. Growth, 451, 65-71(2016).

    [43] I. O. Mayboroda, A. A. Knizhnik, Yu. V. Grishchenko, I. S. Ezubchenko, M. L. Zanaveskin, O. A. Kondratev, M. Yu. Presniakov, B. V. Potapkin, V. A. Ilyin. Growth of AlGaN under the conditions of significant gallium evaporation: phase separation and enhanced lateral growth. J. Appl. Phys., 122, 105305(2017).

    [44] U. Zeimer, V. Kueller, A. Knauer, A. Mogilatenko, M. Weyers, M. Kneissl. High quality AlGaN grown on ELO AlN/sapphire templates. J. Cryst. Growth, 377, 32-36(2013).

    [45] K. Kataoka, T. Narita, K. Horibuchi, H. Makino, K. Nagata, Y. Saito. Formation mechanism and suppression of Ga-rich streaks at macro-step edges in the growth of AlGaN on an AlN/sapphire-template. J. Cryst. Growth, 534, 125475(2020).

    [46] S. Stanczyk, A. Kafar, S. Grzanka, M. Sarzynski, R. Mroczynski, S. Najda, T. Suski, P. Perlin. 450 nm (Al,In)GaN optical amplifier with double ‘j-shape’ waveguide for master oscillator power amplifier systems. Opt. Express, 26, 7351-7357(2018).

    [47] L. Q. Zhang, D. S. Jiang, J. J. Zhu, D. G. Zhao, Z. S. Liu, S. M. Zhang, H. Yang. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J. Appl. Phys., 105, 023104(2009).

    [48] W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, J.-F. Carlin, N. Grandjean. Recombination coefficients of GaN-based laser diodes. J. Appl. Phys., 109, 093106(2011).

    [49] L. Redaelli, H. Wenzel, J. Piprek, T. Weig, S. Einfeldt, M. Martens, G. Lukens, U. T. Schwarz, M. Kneissl. Index-antiguiding in narrow-ridge GaN-based laser diodes investigated by measurements of the current-dependent gain and index spectra and by self-consistent simulation. IEEE J. Quantum Electron., 51, 2000506(2015).

    [50] J. Yang, D. G. Zhao, D. S. Jiang, X. Li, F. Liang, P. Chen, J. J. Zhu, Z. S. Liu, S. T. Liu, L. Q. Zhang, M. Li. Performance of InGaN based green laser diodes improved by using an asymmetric InGaN/InGaN multi-quantum well active region. Opt. Express, 25, 9595-9602(2017).

    A. Kafar, A. Sakaki, R. Ishii, S. Stanczyk, K. Gibasiewicz, Y. Matsuda, D. Schiavon, S. Grzanka, T. Suski, P. Perlin, M. Funato, Y. Kawakami. Influence of substrate misorientation on the emission and waveguiding properties of a blue (In,Al,Ga)N laser-like structure studied by synchrotron radiation microbeam X-ray diffraction[J]. Photonics Research, 2021, 9(3): 299
    Download Citation