• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 2, 243 (2021)
Fan YANG1 and Guohao REN2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.02.012 Cite this Article
    YANG Fan, REN Guohao. Development of ultrafast scintillation crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 243 Copy Citation Text show less
    References

    [1] Van Loef E V D, Dorenbos P, Van Eijk C W E, et al. Scintillation properties of LaBr3:Ce3+ crystals: Fast, efficient and high-energy-resolution scintillators[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2002, 486(1-2): 254-258.

    [2] Cherepy N J, Payne S A, Sturm B W, et al. Comparative Gamma spectroscopy with SrI2(Eu), GYGAG(Ce) and Bi-loaded plastic scintillators[C]. IEEE Nuclear Science Symposium Conference Record (NSS/MIC), 2010: 1288-1291.

    [3] Sturm B W, Cherepy N J, Drury O B, et al. Evaluation of large volume SrI2(Eu) scintillator detectors[C]. IEEE Nuclear Science Symposium Conference Record (NSS/MIC), 2010: 1607-1611.

    [4] Melcher C L, Schweitzer J S. Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator[J]. IEEE Transactions on Nuclear Science, 1992, 39(4): 502-505.

    [5] Cooke D W, McClellan K J, Bennett B L, et al. Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5[J]. Journal of Applied Physics, 2000, 88(12): 7360-7362.

    [6] Autrata R, Schauer P, Kuapil J, et al. A single crystal of YAG-new fast scintillator in SEM[J]. Journal of Physics E: Scientific Instruments, 1978, 11(7): 707-708.

    [7] Lempicki A, Randles M H, Wisniewski D, et al. LuAlO3:Ce and other aluminate scintillators[J]. IEEE Transactions on Nuclear Science, 1995, 42(4): 280-284.

    [8] Lempicki A, Wojtowicz A J, Berman E. Fundamental limits of scintillator performance[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 333(2): 304-311.

    [9] Valentine J D, Rooney B D, Li J. The light yield nonproportionality component of scintillator energy resolution[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 512-517.

    [10] Dorenbos P. Light output and energy resolution of Ce3+-doped scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1): 208-213.

    [11] Derenzo S E, Weber M J, Bourret-Courchesne E, et al. The quest for the ideal inorganic scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1): 111-117.

    [12] Melcher C L. Perspectives on the future development of new scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1): 6-14.

    [13] Lecoq P. Development of new scintillators for medical applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130-139.

    [14] Hu C, Zhang L, Zhu R, et al. Ultrafast inorganic scintillators for gigahertz hard X-ray imaging[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2097-2104.

    [15] Hu C, Zhang L, Zhu R Y, et al. Ultrafast inorganic scintillator-based front imager for gigahertz hard X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 223-229.

    [16] Barnes C W, Funk D J, Hockaday M P, et al. The science of dynamic compression at the mesoscale and the Matter-Radiation Interactions in Extremes (MaRIE) project[C]. th Aps-Sccm and 24th Airapt, 2014, 500: 1-19.

    [17] Wang Z, Barnes C W, Guardincerri E, et al. GHz Hard X-ray imaging: Challenges in efficiency, timing and rate[R]. United States: N. p., 2013. Web. doi:10.2172/1079966.

    [18] Atanov N, Baranov V, Budagov J, et al. The Mu2e undoped CsI crystal calorimeter[J]. Journal of Instrumentation, 2018, 13(2): 1420908.

    [19] Atanov N, Baranov V, Budagov J, et al. Design and status of the Mu2e crystal calorimeter[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2073-2080.

    [20] Rodnyi P A. Progress in fast scintillators[J]. Radiation Measurements, 2001, 33(5): 605-614.

    [21] Laval M, Moszyński M, Allemand R, et al. Barium fluoride-inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 1983, 206(1): 169-176.

    [22] Van Loef E V D, Dorenbos P, Van Eijk C W E, et al. Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: CS2LiYX(X=Cl, Br)[J]. Journal of Physics-Condensed Matter, 2002, 14(36): 8481-8496.

    [23] Lehmann W. Edge emission of n-type conducting ZnO and CdS[J]. Solid-State Electronics, 1966, 9(11): 1107-1110.

    [24] Kleim R, Raga F. Exciton luminescence in lead iodide lifetime, intensity and spectral position dependence on temperature[J]. Journal of Physics and Chemistry of Solids, 1969, 30(9): 2213-2223.

    [25] Van Eijk C W E. Cross-luminescence[J]. Journal of Luminescence, 1994, 60-61: 936-941.

    [26] Farukhi M R, Swinehart C F. Barium fluoride as a Gamma ray and charged particle detector[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 200-204.

    [27] Zhu R Y, Yamammoto H. GEM TN-92-126 and CALT 68-1802[R]. 1992.

    [28] Mrenna S, Shevchenko S, Shi X R, et al. GEM TN-93-373 and CALT 68-1856[R]. 1993.

    [29] Zhu R Y. On quality requirements to the barium fluoride crystals[J]. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 1994, 340(3): 442-457.

    [30] Sobolev B P, Krivandina E A, Derenzo S E, et al. Suppression of BaF2 slow component of X-ray luminescence in non-Stoichiometric Ba0.9R0.1F2.1 crystals (R=rare earth element)[C]. Proceedings of The Material Research Society: Scintillator and Phosphor Materials, 1994, 348: 277-283.

    [31] Yang F, Chen J, Zhang L, et al. La- and La-/Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part II[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 512-518.

    [32] Chen J, Yang F, Zhang L, et al. Slow scintillation suppression in yttrium doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2147-2151.

    [33] Yang F, Chen J, Zhang L, et al. La- and La-/Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part I[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 506-511.

    [34] Glodo J, Loef E V, Hawrami R, et al. Selected properties of Cs2LiYCl6, Cs2LiLaC6, and Cs2LiLaBr6 scintillators[J]. IEEE Transactions on Nuclear Science, 2011, 58(1): 333-338.

    [35] Glodo J, Hawrami R, Shah K S. Development of Cs2LiYCl6 scintillator[J]. Journal of Crystal Growth, 2013, 379: 73-78.

    [36] Combes C M, Dorenbos P, Hollander R W, et al. A thermal-neutron scintillator with n/gamma discrimination LiBaF3:Ce, Rb[J]. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 1998, 416(2-3): 364-370.

    [37] Tale I, Springis M, Kulis P, et al. Colour centres in LiBaF3 crystals[J]. Radiation Measurements, 1998, 29(3-4): 279-282.3

    [38] Gektin A, Shiran N, Voloshinovski A, et al. Scintillation in LiBaF3(Ce) crystals[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 505-507.

    [39] Shiran N V, Gektin A V, Voloshinovski A S. Radiation induced processes in LiBaF3 based crystals[J]. Radiation Measurements, 1998, 29(3-4): 295-298.

    [40] Knitel M J, Dorenbos P, De Haas J T M, et al. LiBaF3, a thermal neutron scintillator with optimal n-γ discrimination[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 374(2): 197-201.

    [41] Bourret-Courchesne E D, Derenzo S E, Weber M J. Development of ZnO:Ga as an ultra-fast scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601(3): 358-363.

    [42] Bourret-Courchesne E D, Derenzo S E, Weber M J. Semiconductor scintillators ZnO and PbI2: Co-doping studies[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579(1): 1-5.

    [43] Derenzo S E, Weber M J, Klintenberg M K. Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga and CdS:In[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2002, 486(1-2): 214-219.

    [44] Moses W W, Choong W S, Derenzo S E, et al. Observation of fast scintillation of cryogenic PbI2 with VLPCs[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2533-2536.

    [45] Belogurov S, Bressi G, Carugno G, et al. Properties of Yb-doped scintillators: YAG, YAP, LuAG[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 516(1): 58-67.

    YANG Fan, REN Guohao. Development of ultrafast scintillation crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 243
    Download Citation