• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1714007 (2021)
Xiaoye Cai*, Jiaqi Hu, Zonghui Cheng, and Jie Zhang
Author Affiliations
  • State-Owned Wuhu Machinery Factory, Wuhu , Anhui 241007, China
  • show less
    DOI: 10.3788/LOP202158.1714007 Cite this Article Set citation alerts
    Xiaoye Cai, Jiaqi Hu, Zonghui Cheng, Jie Zhang. Selective Laser Melting Technology Applied into Aircraft Air Inlet Protective Grilling[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714007 Copy Citation Text show less
    References

    [1] Kruth J P, Froyen L, van Vaerenbergh J et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 149, 616-622(2004).

    [2] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [3] He K T, Zhou L, Yang L C. Microstructure and mechanical properties of 316L stainless steel in the selective laser melting[J]. Laser & Optoelectronics Progress, 57, 091404(2020).

    [4] Yang C, Dong Z H, Chi C T et al. Microstructure and mechanical properties of 24CrNiMo alloy steel formed by selective laser melting[J]. Chinese Journal of Lasers, 47, 0502008(2020).

    [5] Zhao Y, Zhao G R, Ma W Y et al. Study on process, structure, and properties of nickel selective laser melting[J]. Laser & Optoelectronics Progress, 57, 171402(2020).

    [6] Huang S, Guo S Q, Zhang G H et al. Microstructure and impact toughness of GH4169 samples fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 57, 051405(2020).

    [7] Chen X J, Zhao G R, Dong D D et al. Microstructure and mechanical properties of Inconel625 superalloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 46, 1202002(2019).

    [8] Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review[J]. Advanced Engineering Materials, 18, 463-475(2016).

    [9] Han J, Yang J J, Yu H C et al. Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density[J]. Rapid Prototyping Journal, 23, 217-226(2017).

    [10] Xu W, Brandt M, Sun S et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 85, 74-84(2015).

    [11] Vrancken B, Thijs L, Kruth J P et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 541, 177-185(2012).

    [12] Shipley H, McDonnell D, Culleton M et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review[J]. International Journal of Machine Tools and Manufacture, 128, 1-20(2018).

    [13] Thijs L, Verhaeghe F, Craeghs T et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 58, 3303-3312(2010).

    [14] Zhang W X, Tang C L, Chen Z R et al. Effect of annealing temperature on microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting[J]. Heat Treatment of Metals, 44, 122-127(2019).

    [15] Katzarov I, Malinov S, Sha W. Finite element modeling of the morphology of β to α phase transformation in Ti-6Al-4V alloy[J]. Metallurgical and Materials Transactions A, 33, 1027-1040(2002).

    Xiaoye Cai, Jiaqi Hu, Zonghui Cheng, Jie Zhang. Selective Laser Melting Technology Applied into Aircraft Air Inlet Protective Grilling[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714007
    Download Citation