• Journal of Semiconductors
  • Vol. 40, Issue 9, 090401 (2019)
Qing Zhang1 and Xinfeng Liu2
Author Affiliations
  • 1Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
  • 2CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/40/9/090401 Cite this Article
    Qing Zhang, Xinfeng Liu. Exciton–polaritons in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 090401 Copy Citation Text show less
    References

    [1] K Huang. Lattice vibrations and optical waves in ionic crystals. Nature, 167, 779(1951).

    [2] C Henry, J Hopfield. Raman scattering by polaritons. Phys Rev Lett, 15, 964(1965).

    [3] J Hopfield. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev, 112, 1555(1958).

    [4] J Kasprzak, M Richard, S Kundermann et al. Bose–Einstein condensation of exciton polaritons. Nature, 443, 409(2006).

    [5] H Deng, G Weihs, C Santori et al. Condensation of semiconductor microcavity exciton polaritons. Science, 298, 199(2002).

    [6] S Christopoulos, Högersthal G B H Von, A Grundy et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett, 98, 126405(2007).

    [7] T Byrnes, N Y Kim, Y Yamamoto. Exciton–polariton condensates. Nat Phys, 10, 803(2014).

    [8] S Kéna-Cohen, S Forrest. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photon, 4, 371(2010).

    [9] J D Plumhof, T Stöferle, L Mai et al. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater, 13, 247(2013).

    [10] C Schneider, A Rahimi-Iman, N Y Kim et al. An electrically pumped polariton laser. Nature, 497, 348(2013).

    [11] Q H Cui, Q Peng, Y Luo et al. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv, 4, eaap9861(2018).

    [12] D Ballarini, M De Giorgi, E Cancellieri et al. All-optical polariton transistor. Nat Commun, 4, 1778(2013).

    [13] T Gao, P S Eldridge, T C H Liew et al. Polariton condensate transistor switch. Phys Rev B, 85, 235102(2012).

    [14] J Y Lien, Y N Chen, N Ishida et al. Multistability and condensation of exciton–polaritons below threshold. Phys Rev B, 91, 024511(2015).

    [15] T J Evans, A Schlaus, Y Fu et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 6, 1700982(2018).

    [16] R Su, C Diederichs, J Wang et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 17, 3982(2017).

    [17] S Zhang, Q Shang, W Du et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv Opt Mater, 6, 1701032(2018).

    [18] Q Shang, S Zhang, Z Liu et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 18, 3335(2018).

    [19] S Dufferwiel, S Schwarz, F Withers et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun, 6, 8579(2015).

    [20] N Lundt, S Klembt, E Cherotchenko et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 7, 13328(2016).

    [21] T Low, A Chaves, J D Caldwell et al. Polaritons in layered two-dimensional materials. Nat Mater, 16, 182(2017).

    [22] S D Stranks, H J Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 10, 391(2015).

    [23] B R Sutherland, E H Sargent. Perovskite photonic sources. Nat Photon, 10, 295(2016).

    [24] Q Zhang, R Su, W Du et al. Advances in small perovskite-based lasers. Small Methods, 1, 1700163(2017).

    [25] A Fieramosca, L Polimeno, V Ardizzone et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 5, eaav9967(2019).