• Opto-Electronic Engineering
  • Vol. 46, Issue 8, 180666 (2019)
Deng Honglang1、*, Zhou Shaolin1, and Cen Guanting2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180666 Cite this Article
    Deng Honglang, Zhou Shaolin, Cen Guanting. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electronic Engineering, 2019, 46(8): 180666 Copy Citation Text show less
    References

    [1] Zhang J, Zhang W Y, Xi Z P. Development of stealth radarwave absorbing materials[J]. Rare Metal Materials and Engineering, 2008, 37(S4): 504–508.

    [2] Yang C S, Cheng H F, Li X D, et al. Present status of intelligent stealth material[J]. Journal of Functional Materials, 2005, 36(5): 643–647.

    [3] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009.

    [4] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084.

    [5] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.

    [6] Karvounis A, Gholipour B, MacDonald K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 051103.

    [7] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932–4936.

    [8] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212–26221.

    [9] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35.

    [10] Caniou J. Passive Infrared Detection: Theory and Applications[M]. New York: Springer, 1999: 225.

    [11] Jiang X D, Itzler M A, Ben-Michael R, et al. InGaAsP-InP avalanche photodiodes for single photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 895–905.

    [12] Wang J L, Fang H H, Wang X D, et al. Recent progress on localized field enhanced two‐dimensional material photodetectors from ultraviolet—visible to infrared[J]. Small, 2017, 13(35): 1700894.

    [13] Wu G A, Luo L B. Development and application of near infrared photodetectors[J]. Physics, 2018, 47(3): 137–142.

    [14] Yu H Y, Zhang Q, Fu S F, et al. Research advances of absorption properties of metasurfaces[J]. Natural Science Journal of Harbin Normal University, 2017, 33(6): 33–38.

    [15] Yoon G, So S, Kim M, et al. Electrically tunable metasurface perfect absorber for infrared frequencies[J]. Nano Convergence, 2017, 4(1): 36.

    [16] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.

    [17] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998–8006.

    [18] Astorino M D, Frezza F, Tedeschi N. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime[J]. Journal of Applied Physics, 2017, 121(6): 063103.

    [19] Feng Q, Pu M B, Hu C G, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133–2135.

    [20] Guo W L, Liu Y X, Han T C. Ultra-broadband infrared metasurface absorber[J]. Optics Express, 2016, 24(18): 20586–20592.

    [21] Garnett E, Yang P D. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 2010, 10(3): 1082–1087.

    [22] Jeong S, McDowell M T, Cui Y. Low-temperature self-catalytic growth of tin oxide nanocones over large areas[J]. ACS Nano, 2011, 5(7): 5800–5807.

    [23] Zhu J, Hsu C M, Yu Z F, et al. Nanodome solar cells with efficient light management and self-cleaning[J]. Nano Letters, 2010, 10(6): 1979–1984.

    [24] Pu M B, Hu C G, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413–17420.

    [25] Ullah H, Khan A D, Noman M, et al. Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array[J]. Plasmonics, 2018, 13(2): 591–597.

    [26] Li W, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959–7965.

    [27] Huo D W, Zhang J W, Wang Y C, et al. Broadband perfect absorber based on tin-nanocone metasurface[J]. Nanomaterials, 2018, 8(7): 485.

    [28] Deng H X, Li Z G, Stan L, et al. Broadband perfect absorber based on one ultrathin layer of refractory metal[J]. Optics Letters, 2015, 40(11): 2592–2595.

    [29] Chirumamilla M, Roberts A S, Ding F, et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications[J]. Optical Materials Express, 2016, 6(8): 2704–2714.

    [30] Aalizadeh M, Khavasi A, Butun B, et al. Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure[J]. Scientific Reports, 2018, 8(1): 9162.

    [31] Liu H W, Lu J P, Wang X R. Metamaterials based on the phase transition of VO2[J]. Nanotechnology, 2017, 29(2): 024002.

    [32] Tabata H. Application of terahertz wave technology in the biomedical field[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1146–1153.

    [33] Davies A G, Burnett A D, Fan W H, et al. Terahertz spectroscopy of explosives and drugs[J]. Materialstoday, 2008, 11(3): 18–26.

    [34] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97–105.

    [35] Sensale-Rodriguez B, Yan R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3: 780.

    [36] Huang X J, Zhang X, Hu Z R, et al. Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach[J]. IET Microwaves, Antennas & Propagation, 2015, 9(4): 307–312.

    [37] Li X W, Liu H J, Sun Q B, et al. Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber[J]. Photonics and Nanostructures-Fundamentals and Applications, 2015, 15: 81–88.

    [38] Pu M B, Wang M, Hu C G, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J]. Optics Express, 2012, 20(23): 25513–25519.

    [39] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

    [40] Huang Y J, Luo J, Pu M B, et al. Catenary electromagnetics for ultra‐broadband lightweight absorbers and large‐scale flat antennas[J]. Advanced Science, 2019, 6(7): 1801691.

    [41] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275.

    [42] Zhang M, Zhang F, Ou Y, et al. Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface[J]. Nanophotonics, 2018, 8(1): 117–125.

    [43] Chen H T, O'Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics, 2008, 2(5): 295–298.

    [44] Dicken M J, Aydin K, Pryce I M, et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Optics Express, 2009, 17(20): 18330–18339.

    [45] Cao T, Zhang L, Simpson R E, et al. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial[J]. Journal of the Optical Society of America B, 2013, 30(6): 1580–1585.

    [46] Cao T, Wei C W, Simpson R E, et al. Rapid phase transition of a phase-change metamaterial perfect absorber[J]. Optical Materials Express, 2013, 3(8): 1101–1110.

    [47] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191.

    [48] Xiao S Y, Wang T, Liu Y B, et al. Tunable light trapping and absorption enhancement with graphene ring arrays[J]. Physical Chemistry Chemical Physics, 2016, 18(38): 26661–26669.

    [49] Liu T T, Yi Z, Xiao S Y. Active control of near-field coupling in a terahertz metal-graphene metamaterial[J]. IEEE Photonics Technology Letters, 2017, 29(22): 1998–2001.

    [50] Xiao S Y, Wang T, Liu T T, et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 2018, 126: 271–278.

    [51] Neto A H C, Guinea F, Peres N, et al. The electronic properties of graphene[J]. Review of Modern Physics, 2009, 81(5934): 109.

    [52] Cao S, Wang T S, Sun Q, et al. Graphene–silver hybrid metamaterial for tunable and high absorption at mid-infrared waveband[J]. IEEE Photonics Technology Letters, 2018, 30(5): 475–478.

    [53] Tian X Y, Yin L X, Li D C. Current situation and trend of f abrication technologies f or three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69–76.

    [54] Chen M, Chang L Z, Gao X, et al. Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carved “H” array[J]. IEEE Photonics Journal, 2017, 9(5): 4601011.

    [55] Ziolkowski R W, Jin P, Lin C C. Metamaterial-inspired engineering of antennas[J]. Proceedings of the IEEE, 2011, 99(10): 1720–1731.

    [56] Ibraheem I A, Koch M. Coplanar waveguide metamaterials: the role of bandwidth modifying slots[J]. Applied Physics Letters, 2007, 91(11): 113517.

    [57] Fang X, MacDonald K F, Zheludev N I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor[J]. Light: Science & Applications, 2015, 4(5): e292.

    [58] Pu M B, Feng Q, Wang M, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination[J]. Optics Express, 2012, 20(3): 2246–2254.

    [59] Luo X G. Subwavelength optical engineering with metasurface waves[J]. Advanced Optical Materials, 2018, 6(7): 1701201.

    [60] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Opto-Electronic Engineering, 2017, 44(1): 2.

    Deng Honglang, Zhou Shaolin, Cen Guanting. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electronic Engineering, 2019, 46(8): 180666
    Download Citation