• Photonics Research
  • Vol. 8, Issue 1, 51 (2020)
Zeferino Ibarra-Borja1, Carlos Sevilla-Gutiérrez1, Roberto Ramírez-Alarcón1、*, Hector Cruz-Ramírez2, and Alfred B. U’Ren2
Author Affiliations
  • 1Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Colonia Lomas del Campestre, 37150 León, Guanajuato, Mexico
  • 2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 DF, Mexico
  • show less
    DOI: 10.1364/PRJ.8.000051 Cite this Article Set citation alerts
    Zeferino Ibarra-Borja, Carlos Sevilla-Gutiérrez, Roberto Ramírez-Alarcón, Hector Cruz-Ramírez, Alfred B. U’Ren. Experimental demonstration of full-field quantum optical coherence tomography[J]. Photonics Research, 2020, 8(1): 51 Copy Citation Text show less
    References

    [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [2] P. Tomlins, R. Wang. Theory, developments and applications of optical coherence tomography. J. Phys. D, 38, 2519-2535(2005).

    [3] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, E. Scherzer. Submicrometer axial resolution optical coherence tomography. Opt. Lett., 27, 1800-1802(2002).

    [4] P. Tang, J. Xu, R. Wang. Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography. Appl. Phys. Lett., 113, 231101(2018).

    [5] C. K. Hitzenberger, A. Baumgartner, W. Drexler, A. F. Fercher. Dispersion effects in partial coherence interferometry: implications for intraocular ranging. J. Biomed. Opt., 4, 144-151(1999).

    [6] C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [7] A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A, 65, 053817(2002).

    [8] M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett., 91, 083601(2003).

    [9] M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, M. C. Teich. Quantum optical coherence tomography of a biological sample. Opt. Commun., 282, 1154-1159(2009).

    [10] J. D. Franson. Nonlocal cancellation of dispersion. Phys. Rev. A, 45, 3126-3132(1992).

    [11] A. M. Steinberg, P. G. Kwiat, R. Chiao. Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer. Phys. Rev. A, 45, 6659-6665(1992).

    [12] A. M. Steinberg, P. G. Kwiat, R. Chiao. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett., 68, 2421-2424(1992).

    [13] M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, S. Takeuchi. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography. Sci. Rep., 5, 18042(2015).

    [14] M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, S. Takeuchi. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals. Opt. Express, 20, 13977-13987(2012).

    [15] S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, G. G. Paulus. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation. Sci. Rep., 6, 20658(2016).

    [16] P. Wachulak, A. Bartnik, H. Fiedorowicz. Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source. Sci. Rep., 8, 8494(2018).

    [17] A. Vallés, G. Jiménez, L. J. Salazar-Serrano, J. P. Torres. Optical sectioning in induced coherence tomography with frequency-entangled photons. Phys. Rev. A, 97, 023824(2018).

    [18] A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, L. A. Krivitsky. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol., 3, 025008(2018).

    [19] P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, A. B. U’Ren. Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs. Sci. Rep., 9, 8954(2019).

    [20] D. Lopez-Mago, L. Novotny. Quantum-optical coherence tomography with collinear entangled photons. Opt. Lett., 37, 4077-4079(2012).

    [21] A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun., 117, 43-48(1995).

    [22] E. Beaurepaire, A. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes. Full-field optical coherence microscopy. Opt. Lett., 23, 244-246(1998).

    [23] A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, C. Boccara. Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt., 43, 2874-2883(2004).

    [24] R. S. Aspden, D. S. Tasca, R. W. Boyd, M. J. Padgett. EPR-based ghost imaging using a single-photon-sensitive camera. New J. Phys., 15, 073032(2013).

    [25] P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, M. J. Padgett. Resolution limits of quantum ghost imaging. Opt. Express, 26, 7528-7536(2018).

    [26] R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, A. Zeilinger. Real-time imaging of quantum entanglement. Sci. Rep., 3, 1914(2013).

    [27] M. Jachura, R. Chrapkiewicz. Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified SCMOS camera. Opt. Lett., 40, 1540-1543(2015).

    [28] R. Chrapkiewicz, M. Jachura, K. Banaszek, W. Wasilewski. Hologram of a single photon. Nat. Photonics, 10, 576-579(2016).

    [29] I. Dhand, A. Khalid, H. Lu, B. C. Sanders. Accurate and precise characterization of linear optical interferometers. J. Opt., 18, 035204(2016).

    [30] P. P. Rohde, T. C. Ralph. Modelling photo-detectors in quantum optics. J. Mod. Opt., 53, 1589-1603(2006).

    [31] K. M. Davis, K. Miura, N. Sugimoto, K. Hirao. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 21, 1729-1731(1996).

    CLP Journals

    [1] Pablo Yepiz-Graciano, Alí Michel Angulo Martínez, Dorilian Lopez-Mago, Hector Cruz-Ramirez, Alfred B. U’Ren. Spectrally resolved Hong–Ou–Mandel interferometry for quantum-optical coherence tomography[J]. Photonics Research, 2020, 8(6): 1023

    Zeferino Ibarra-Borja, Carlos Sevilla-Gutiérrez, Roberto Ramírez-Alarcón, Hector Cruz-Ramírez, Alfred B. U’Ren. Experimental demonstration of full-field quantum optical coherence tomography[J]. Photonics Research, 2020, 8(1): 51
    Download Citation