• Infrared and Laser Engineering
  • Vol. 49, Issue 8, 20200005 (2020)
Bingxu Chen1, Zhiyuan Liao2, Chao Cao2, Yu Bai2, and Da Mu1
Author Affiliations
  • 1School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • show less
    DOI: 10.3788/IRLA20200005 Cite this Article
    Bingxu Chen, Zhiyuan Liao, Chao Cao, Yu Bai, Da Mu. Design of the freeform imaging system with large field of view and large relative aperture[J]. Infrared and Laser Engineering, 2020, 49(8): 20200005 Copy Citation Text show less

    Abstract

    In recent years, freeform surfaces have been used increasingly in off-axis reflective imaging systems with high performance levels. In this paper, the cooled off-axis reflection optical system with both a large FOV(field-of-view) and a large relative aperture was designed based on the initial structure from vector aberration theory and genetic algorithm, by using a biased input field and an offset aperture stop, utilizing freeform surfaces described byXY polynomials to increase degrees of freedom to correct off-axis aberrations. The working band of the system was LWIR(long wavelength infrared) 8-12 μm, the focal length was 400 mm, the F-number was 2, the FOV was $ 8^{\circ} \times 5^{\circ} $, and the average root mean square (RMS) wavefront error of the system was 0.037 054λ(λ=9 μm).The detector''s cold stop matches the exit pupil of the optical system which ensure a 100% efficiency of the cold diaphragm. The system has a high energy concentration and a good image quality.
    ${H_{Aj}} = H - {\sigma _j}$(1)

    View in Article

    ${\rho ^{'}} = B\rho + {P_1}$(2)

    View in Article

    $\left\{ \begin{aligned} W =& {\displaystyle \sum\limits_{{j}} {{W_{040j}}\left( {{\rho ^{'}} \cdot {\rho ^{'}}} \right)} ^2} + \displaystyle \sum\limits_j {{W_{131j}}\left( {H \cdot {\rho ^{'}}} \right) \times \left( {{\rho ^{'}} \cdot {\rho ^{'}}} \right)} +\\ & \dfrac{1}{2}\displaystyle \sum\limits_j {{W_{222j}}\left( {{H^2} \cdot {\rho ^{'}}^2} \right)} {\rm{ + }}\displaystyle \sum\limits_{{j}} {{W_{220Mj}}\left( {H \cdot H} \right)\left( {{\rho ^{'}} \cdot {\rho ^{'}}} \right)} +\\ & \displaystyle \sum\limits_j {{W_{131j}}\left( {H \cdot H} \right)\left( {{\rho ^{'}} \cdot {\rho ^{'}}} \right)} \\ & {W_{220Mj}} = {W_{220j}} + \dfrac{1}{2}{W_{222j}} \end{aligned} \right.$(3)

    View in Article

    $\begin{split} & {{C}_{1}}={{B}^{4}}\displaystyle \sum\limits_{j}{{{W}_{040j}}} \\ & {{C}_{2}}={{B}^{3}}\left( 4\sum\limits_{j}{{{W}_{040j}}{{P}_{1}}+\displaystyle \sum\limits_{j}{{{W}_{131j}}{{H}_{Aj}}}} \right) \\ & {{C}_{3}}={{B}^{2}}\left( 2\sum\limits_{j}{{{W}_{040j}}{{P}_{1}}^{2}+\displaystyle \sum\limits_{j}{{{W}_{131j}}{{P}_{1}}{{H}_{Aj}}}} \right.\left. +\dfrac{1}{2}\displaystyle \sum\limits_{j}{{{W}_{222j}}{{H}^{2}}_{Aj}} \right) \\ & {{C}_{4}}={{B}^{2}}\left( 4\displaystyle \sum\limits_{j}{{{W}_{040j}}\left( {{P}_{1}}\centerdot {{P}_{1}} \right)+2\displaystyle \sum\limits_{j}{{{W}_{131j}}\left( {{P}_{1}}\centerdot {{H}_{Aj}} \right)}} \right.\left. +\displaystyle \sum\limits_{j}{{{W}_{220Mj}}\left( {{H}_{Aj}}\centerdot {{H}_{Aj}} \right)} \right) \\ & {{C}_{5}}=B\left( 4\sum\limits_{j}{{{W}_{040j}}\left( {{P}_{1}}\centerdot {{P}_{1}} \right){{P}_{1}}+2\displaystyle \sum\limits_{j}{{{W}_{131j}}\left( {{P}_{1}}\centerdot {{P}_{1}} \right){{H}_{Aj}}}} \right.+\displaystyle \sum\limits_{j}{{{W}_{131j}}{{P}_{1}}^{2}{{H}^{*}}_{Aj}} \;+\\ & \quad\;\;\left.\displaystyle \sum\limits_{j}{{{W}_{222j}}{{H}^{2}}_{Aj}{{P}_{1}}^{*}}+2\sum\limits_{j}{{{W}_{220Mj}}\left( {{H}_{Aj}}\centerdot {{H}_{Aj}} \right){{P}_{1}}+}\displaystyle \sum\limits_{j}{{{W}_{311j}}\left( {{H}_{Aj}}\centerdot {{H}_{Aj}} \right){{H}_{Aj}}} \right) \end{split}$(4)

    View in Article

    $ \left\{ \begin{aligned} & Q = \displaystyle \int\limits_{\rm{c}}^d {\int\limits_a^b {Q\left( H \right){\rm d}{H_x}{H_y}\left( {a \leqslant {H_x} \leqslant b,c \leqslant {H_y} \leqslant d} \right)} } \\ & Q\left( H \right) = {\omega _1}\left| {{C_1}} \right| + {\omega _2}{\left\| {{C_2}} \right\|_1} + {\omega _3}{\left\| {{C_3}} \right\|_1} + {\omega _4}\left| {{C_4}} \right| + {\omega _5}{\left\| {{C_5}} \right\|_1} \end{aligned} \right. $ (5)

    View in Article

    $Q{\rm{ = }}\frac{1}{N}\sum\limits_{i = 1}^N {Q\left( {{H_i}} \right)} $(6)

    View in Article

    ${f^{'}} = {{ - {h_0}} /{{u^{'}}_k}}$(7)

    View in Article

    ${d_k} = {{ - {h_k}} /{{u^{'}}_k}}$(8)

    View in Article

    $ L = {{{ - \overline {{h_k}} } /{\overline {{u_k}} }}^{'}} $ (9)

    View in Article

    $s = {d_k} - L$(10)

    View in Article

    $ Q{\rm{ = }}\frac{1}{N}\sum\limits_{i = 1}^N {Q\left( {{H_i}} \right)} {\rm{ + }}{\omega _6}\left| {{f^{'}} + {{{h_0}} /{{u^{'}}_k}}} \right| + {\omega _7}\left| {{d_k} - L - s} \right| $ (11)

    View in Article

    $z = \frac{{c{r^2}}}{{1 + \sqrt {1 - \left( {1 + k} \right){c^2}{r^2}} }} + \sum\limits_{j = 2}^N {{C_j}{x^m}{y^n}} $(12)

    View in Article

    $j = \frac{{{{\left( {m + n} \right)}^2} + m + 3n}}{2} + 1$(13)

    View in Article

    Bingxu Chen, Zhiyuan Liao, Chao Cao, Yu Bai, Da Mu. Design of the freeform imaging system with large field of view and large relative aperture[J]. Infrared and Laser Engineering, 2020, 49(8): 20200005
    Download Citation