• Laser & Optoelectronics Progress
  • Vol. 55, Issue 5, 051602 (2018)
Xinyang Cai1、1; , Xinwei Wang、2*; *; , Ruxue Li1、1; , Dengkui Wang1、1; , Xuan Fang1、1; , Dan Fang1、1; , Yuping Zhang1、3; , Xiuping Sun1、1; , Xiaohua Wang1、1; , and Zhipeng Wei1、1;
Author Affiliations
  • 1 State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 1 State Key Laboratory of Supramolecular Structure and Material, Institute of Theoretical Chemistry,Jilin University, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP55.051602 Cite this Article Set citation alerts
    Xinyang Cai, Xinwei Wang, Ruxue Li, Dengkui Wang, Xuan Fang, Dan Fang, Yuping Zhang, Xiuping Sun, Xiaohua Wang, Zhipeng Wei. Controllable Modulation of Surface Plasmon Resonance Wavelength of ITO Thin Films[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051602 Copy Citation Text show less
    References

    [1] Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nature Communications, 3, 1205(2012).

    [2] Kaur G, Yadav K L, Mitra A. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al∶ZnO/p-Cu2O heterojunction[J]. Applied Physics Letters, 107, 053901(2015).

    [3] Dou X J, Min C J, Zhang Y Q et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 36, 1026004(2016).

    [4] Hao D, Hu C, Grant J et al. Hybrid localized surface plasmon resonance and quartz crystal microbalance sensor for label free biosensing[J]. Biosensors and Bioelectronics, 100, 23-27(2018).

    [5] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [6] Guo Q B, Liu X F, Qiu J R. Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J]. Chinese Journal of Lasers, 44, 0703005(2017).

    [7] Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: From beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 54, 050002(2017).

    [8] Kanehara M, Koike H, Yoshinaga T et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region[J]. Journal of the American Chemical Society, 131, 17736-17737(2009).

    [9] Zhang B X, Chen S F, Fu L et al. Dynamic patterning of microparticles via surface plasmon excitation[J]. Chinese Journal of Lasers, 39, 0610001(2012).

    [10] Jia R, Lin G, Zhao D et al. Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances[J]. Applied Surface Science, 332, 340-345(2015).

    [11] Bai Y, Gao C, Yin Y. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability[J]. Nanoscale, 9, 14875-14880(2017).

    [12] You J B, Zhang X W, Dong J J et al. Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles[J]. Nanoscale Research Letters, 4, 1121-1125(2009).

    [13] Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 52, 092401(2015).

    [14] Gao J. Investigation of siliver nanoparticle films in plasmonics for use as fluorescence enhancement of RH6G molecules[J]. Laser & Optoelectronics Progress, 52, 061601(2015).

    [15] Karasawa T, Miyata Y. Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by dc reactive sputtering[J]. Thin Solid Films, 223, 135-139(1993).

    [16] Zeng W Q, Yao J K, He H B et al. Influence of substrate temperature on the properties of tin-doped indium oxide thin films prepared by direct current magnetron sputtering[J]. Chinese Journal of Lasers, 35, 2031-2035(2008).

    [17] Zhang Y H, Guo W L, Qin Y et al. Effects of ITO on proprieties of novel AlGaInP red LED[J]. Acta Optica Sinica, 30, 2401-2405(2010).

    [18] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials[J]. Science, 331, 290-291(2011).

    [19] Brewer S H, Franzen S. Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy[J]. The Journal of Physical Chemistry B, 106, 12986-12992(2002).

    [20] Kamakura R, Fujita K, Murai S et al. Controlling plasmonic properties of epitaxial thin films of indium tin oxide in the near-infrared region[J]. Journal of Physics, 619, 012056(2015).

    [21] Fang X, Mak C L, Zhang S et al. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region[J]. Journal of Physics: Condensed Matter, 28, 224009(2016).

    [22] Tuo Y F, Wu Y P, Huang M et al. The surface plasmon resonance absorption of indium tin oxide nanoparticles and its control[J]. Advanced Materials Research, 1118, 160-165(2015).

    [23] Hao L, Diao X, Xu H et al. Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates[J]. Applied Surface Science, 254, 3504-3508(2008).

    [24] West P R, Ishii S, Naik G V et al. Searching for better plasmonic materials[J]. Laser & Photonics Reviews, 4, 795-808(2010).

    [25] Gao M Z, Job R, Xue D S et al. Thickness dependence of resistivity and optical reflectance of ITO films[J]. Chinese Physics Letters, 25, 1380-1383(2008).

    Xinyang Cai, Xinwei Wang, Ruxue Li, Dengkui Wang, Xuan Fang, Dan Fang, Yuping Zhang, Xiuping Sun, Xiaohua Wang, Zhipeng Wei. Controllable Modulation of Surface Plasmon Resonance Wavelength of ITO Thin Films[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051602
    Download Citation