• Opto-Electronic Advances
  • Vol. 1, Issue 9, 180016 (2018)
[in Chinese]1、2、3, [in Chinese]1、2、*, [in Chinese]1、2, [in Chinese]1、4, [in Chinese]1、2、3, and [in Chinese]1、2、3
Author Affiliations
  • 1Manufacturing Technology Department, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • 2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
  • 3School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Computer, Hunan University of Technology, Zhuzhou 412007, China
  • show less
    DOI: 10.29026/oea.2018.180016 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Acoustic wave detection of laser shock peening[J]. Opto-Electronic Advances, 2018, 1(9): 180016 Copy Citation Text show less
    References

    [1] T Takata, M Enoki, P Chivavibul, A Matsui, Y Kobayashi. Acoustic emission monitoring of laser shock peening by detection of underwater acoustic wave. Mater Trans, 57, 674-680(2016).

    [2] W Guo, R J Sun, B W Song, Y Zhu, F Li et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy. Surf Coat Technol, 349, 503-510(2018).

    [3] J J Wu, J B Zhao, H C Qiao, Y Lu, B Y Sun et al. The application status and development of laser shock processing. Opto-Electron Eng, 45, 170690(2018).

    [4] C Rubio-González, J L Ocaña, G Gomez-Rosas, C Molpeceres, M Paredes et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy. Mater Sci Eng A, 386, 291-295(2004).

    [5] P Peyre, R Fabbro, P Merrien, H P Lieurade. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A, 210, 102-113(1996).

    [6] A H Clauer, D F Lahrman. Laser shock processing as a surface enhancement process. Key Eng Mater, 197, 121-144(2001).

    [7] C S Montross, T Wei, L Ye, G Clark, Y W Mai. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue, 24, 1021-1036(2002).

    [8] W L Li, L Yu, X G Wang. Test of residual stress by hole drilling strain method. WISCO Technol, 51, 55-59(2013).

    [9] M Gelfi, E Bontempi, R Roberti, L E Depero. X-ray diffraction Debye Ring Analysis for STress measurement (DRAST): a new method to evaluate residual stresses. Acta Mater, 52, 583-589(2004).

    [10] B P Fairand, B A Wilcox, W J Gallagher, D N Williams. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J Appl Phys, 43, 3893-3895(1972).

    [11] P J Golden, A Hutson, V Sundaram, J H Arps. Effect of surface treatments on fretting fatigue of Ti-6Al-4V. Int J Fatigue, 29, 1302-1310(2007).

    [12] Y K Zhang, J Z Lu, X D Ren, H B Yao, H X Yao. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy. Mater Des, 30, 1697-1703(2009).

    [13] I Varghese, D Zhou, M D M Peri, C Cetinkaya. Thermal loading of laser induced plasma shockwaves on thin films in nanoparticle removal. J Appl Phys, 101, 113106(2007).

    [14] H C Qiao, J B Zhao. Design and implementation of online laser peening detection system. Laser Optoelectron Prog, 50, 071401(2013).

    [15] LiY HTheory and Technology of Laser Shock Processing (Science Press, Beijing, 2013)Li Y H. Theory and Technology of Laser Shock Processing (Science Press, Beijing, 2013).

    [16] X H Wu. Review of alloy and process development of TiAl alloys. Intermetallics, 14, 1114-1122(2006).

    [17] K S Chan, Y W Kim. Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy. Metall Trans A, 23, 1663-1677(1992).

    [18] J M Yarborough, Y Y Lai, Y Kaneda, J Hader, J V Moloney et al. Record pulsed power demonstration of a 2 μm GaSb-based optically pumped semiconductor laser grown lattice-mismatched on an AlAs/GaAs Bragg mirror and substrate. Appl Phys Lett, 95, 081112(2009).

    [19] S L Shu, G Y Hou, J Feng, L J Wang, S C Tian et al. Progress of optically pumped GaSb based semiconductor disk laser. Opto-Electron Adv, 1, 170003(2018).

    [20] B B Zhang, D Y Zhao, T Zhao. Adaptive sliding mode control based on disturbance observer for manipulator systems. Inf Control, 47, 184-190(2018).

    [21] I Inasaki. Application of acoustic emission sensor for monitoring machining processes. Ultrasonics, 36, 273-281(1998).

    [22] C Mekchar, W Wongsuwan, W Srichavengsup, W San-Um. The implementation of cost-effective data acquisition system for acoustic emission sensor using variable gain preamplifier and STM32F4 microcontroller interface. TNI J Eng Technol, 2, 18-22(2014).

    [23] K S Pickens, M S Rzchowski, D I Bolef. Use of a distributed processing data-acquisition system to control an acoustic spectrometer. Rev Sci Instrum, 54, 710-715(1983).

    [24] DingKYeLChapter 4: Two-Dimensional Simulation of Single and Multiple Laser Shock Peening. Laser Shock Peening: Performance and Process Simulation 73-99 (Elsevier, 2006)https://doi.org/10.1533/9781845691097.73. https://doi.org/10.1533/9781845691097.73

    [25] G Taylor. The formation of a blast wave by a very intense explosion Ⅰ. Theoretical discussion. Proc Roy Soc A, 201, 175-186(1950).

    [26] H N G Wadley, K P Dharmasena, M Y He, R M McMeeking, A G Evans et al. An active concept for limiting injuries caused by air blasts. Int J Impact Eng, 37, 317-323(2010).

    [27] B Y Li, X C Zhou, Y S Zhang. The relationship between the energy levels of shock waves and the degree of renal damage after ESWL: A prospective clinical matching trail. J Huazhong Univ Sci Technol (Med Sci), 14, 114-118(1994).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Acoustic wave detection of laser shock peening[J]. Opto-Electronic Advances, 2018, 1(9): 180016
    Download Citation