• Laser & Optoelectronics Progress
  • Vol. 56, Issue 19, 193002 (2019)
Jian Huang1、**, Jingqi Lu1、*, Huan Yang2, and Xiangdong Cao2
Author Affiliations
  • 1Department of Physics, College of Science of Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 2Wuhan Hongtuo New Technology Co., Ltd., Wuhan, Hubei 430070, China
  • show less
    DOI: 10.3788/LOP56.193002 Cite this Article Set citation alerts
    Jian Huang, Jingqi Lu, Huan Yang, Xiangdong Cao. Quantitative Analysis on Coal Calorific Value Using Nanosecond, Femtosecond, and Dual-Pulse Laser-Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2019, 56(19): 193002 Copy Citation Text show less
    References

    [1] Mott R A, Spooner C E. The calorific value of carbon in coal: the Dulong relationship[J]. Fuel, 19, 242-251(1940).

    [2] Wang Z, Dong F Z, Zhou W D. A rising force for the world-wide development of laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 17, 617-620(2015).

    [3] Borsaru M, Biggs M, Nichols W et al. The application of prompt-gamma neutron activation analysis to borehole logging for coal[J]. Applied Radiation and Isotopes, 54, 335-343(2001).

    [4] Chen N, Liu Y X, Du S Z et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 53, 050003(2016).

    [5] Ding Y, Xiong X, Zhao X Q. Quantitative analysis of laser-induced breakdown spectroscopy of P and S in steel sample based on internal standard method[J]. Acta Photonica Sinica, 47, 0847011(2018).

    [6] Dong M R, Lu J D, Yao S C et al. Quantitative analysis of carbon content in coal with multivariate calibration by LIBS[J]. Journal of Engineering Thermophysics, 33, 175-179(2012).

    [7] Yang H, Huang L, Liu M H et al. Detection of cadmium in navel orange by laser induced breakdown spectroscopy combined with moving window partial least square[J]. Laser & Optoelectronics Progress, 54, 083002(2017).

    [8] Feng J, Wang Z, West L et al. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy[J]. Analytical and Bioanalytical Chemistry, 400, 3261-3271(2011).

    [9] Shen Q M, Zhou W D, Li K X. Quantative elemental analysis using laser induced breakdown spectroscopy and neuro-genetic approach[J]. Chinese Journal of Lasers, 38, 0315001(2011).

    [10] Li Y S, Lu W Y, Zhao J B et al. Detection of caloric value of coal using laser-induced breakdown spectroscopy combined with BP neural networks[J]. Spectroscopy and Spectral Analysis, 37, 2575-2579(2017).

    [11] Lu Z M, Mo J H, Yao S C et al. Rapid determination of the gross calorific value of coal using laser-induced breakdown spectroscopy coupled with artificial neural networks and genetic algorithm[J]. Energy & Fuels, 31, 3849-3855(2017).

    [12] Mao X L. Bol'Shakov A A, Choi I, et al. Laser ablation molecular isotopic spectrometry: strontium and its isotopes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 66, 767-775(2011).

    [13] Pan J. Reseach on detection of industrial coal quality analysis based on LIBS[D]. Guangzhou: South China University of Technology(2016).

    [14] Nicolodelli G, Senesi G S, Ranulfi A C et al. Double-pulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples[J]. Microchemical Journal, 133, 272-278(2017).

    [15] Wang J M, Zheng H J, Zheng P C et al. Spectral characteristics of Coptis chinensis plasma induced by orthogonal re-heating double-pulse laser[J]. Chinese Journal of Lasers, 45, 0702006(2018).

    [16] Li X W, Yin H L, Wang Z et al. Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 111, 102-107(2015).

    [17] de Giacomo A, Dell'Aglio M, Santagata A et al. . Early stage emission spectroscopy study of metallic titanium plasma induced in air by femtosecond- and nanosecond-laser pulses[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 935-947(2005).

    [18] Margetic V, Pakulev A, Stockhaus A et al. A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 55, 1771-1785(2000).

    [19] Gurevich E L, Hergenröder R. Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives[J]. Applied Spectroscopy, 61, 233A-242A(2007).

    [20] Jiang A, Peng J T, Xie Q W et al. An improved asymmetric least squares baseline correction algorithm[J]. Computers and Applied Chemistry, 29, 537-540(2012).

    [21] Elnasharty I Y, Doucet F R. Gravel J F Y, et al. Double-pulse LIBS combining short and long nanosecond pulses in the microjoule range[J]. Journal of Analytical Atomic Spectrometry, 29, 1660-1666(2014).

    [22] Wu J, Wu Y J, Fan S et al. Signal stability of collinear double pulse laser induced breakdown spectroscopy combining with auto-focusing system[J]. Chinese Journal of Lasers, 45, 0711003(2018).

    Jian Huang, Jingqi Lu, Huan Yang, Xiangdong Cao. Quantitative Analysis on Coal Calorific Value Using Nanosecond, Femtosecond, and Dual-Pulse Laser-Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2019, 56(19): 193002
    Download Citation