• Journal of Inorganic Materials
  • Vol. 36, Issue 8, 893 (2020)
Fan ZHOU1、2, Hui BI1, and Fuqiang HUANG1、2、3、*
Author Affiliations
  • 11. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
  • 33. State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • show less
    DOI: 10.15541/jim20200632 Cite this Article
    Fan ZHOU, Hui BI, Fuqiang HUANG. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue[J]. Journal of Inorganic Materials, 2020, 36(8): 893 Copy Citation Text show less
    SEM images of (a) raw RHs, (b) RHBC, (c) YP-80, (d) RHAC600, (e) RHAC700, (d) RHAC800; SEM (g), and TEM (h) images of RHAC900
    1. SEM images of (a) raw RHs, (b) RHBC, (c) YP-80, (d) RHAC600, (e) RHAC700, (d) RHAC800; SEM (g), and TEM (h) images of RHAC900
    (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption-desorption isotherms and (d) pore size distribution curves of RHBC, RHACs and YP-80
    2. (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption-desorption isotherms and (d) pore size distribution curves of RHBC, RHACs and YP-80
    Effects of contact time and mass of adsorbent on the adsorption capacity
    3. Effects of contact time and mass of adsorbent on the adsorption capacity
    Linear fits of the pseudo-second-order models for the adsorption of MB on (a) YP-80, (b) RHAC600, (c) RHAC700, (d) RHAC800, (e) RHAC900, and (f) corresponding correlation coefficients
    4. Linear fits of the pseudo-second-order models for the adsorption of MB on (a) YP-80, (b) RHAC600, (c) RHAC700, (d) RHAC800, (e) RHAC900, and (f) corresponding correlation coefficients
    XRD patterns of the product calcined from RHs and RHBC
    S1. XRD patterns of the product calcined from RHs and RHBC
    (a) XRD patterns of dried RHBC mixture impregnated with two different concentrations of KOH solution; (b) Nitrogen adsorption desorption curves of two RHAC with different concentrations of KOH solution
    S2. (a) XRD patterns of dried RHBC mixture impregnated with two different concentrations of KOH solution; (b) Nitrogen adsorption desorption curves of two RHAC with different concentrations of KOH solution
    Linear fits of the pseudo-first-order models for five carbons: (a) YP-80, (b) RHAC600,(c) RHAC700, (d) RHAC800, (e) RHAC900 and (f) correlation coefficients
    S3. Linear fits of the pseudo-first-order models for five carbons: (a) YP-80, (b) RHAC600,(c) RHAC700, (d) RHAC800, (e) RHAC900 and (f) correlation coefficients
    Photos of RH, RHBC, RHAC600, RHAC700, RHAC800 and RHAC900 before and after calcination
    S4. Photos of RH, RHBC, RHAC600, RHAC700, RHAC800 and RHAC900 before and after calcination
    FT-IR spectra of RHAC before and after MB adsorption
    S5. FT-IR spectra of RHAC before and after MB adsorption
    BiomassActivatorPore volume/(cm3•g-1) SSABET/(m2•g-1) qm/(mg•g-1)
    Tobacco stalks[1]ZnCl2+Microwave 0.45684.68123.45
    Dipterocarpus alatus[2]ZnCl2/500 ℃ 0.473843269.3
    Sugar beet pulp[3]H3PO4/450 ℃ 0.4451029.3250.0
    Palm kernel shell[4]ZnCl2/550 ℃ 0.5711058225.3
    Rice by-products[5]H3PO4/450 ℃ 0.612/0.607814/1000246.9/213.7
    Viscose fibers[6]Steam/900 ℃0.54/0.761284/1614256.1/325.8
    Cotton[7]H3PO4+Microwave 0.981370476.2
    Cashew nut shell[8]ZnCl2/400 ℃ 0.9731478476
    Arundo donax[9]ZnCl2/400 ℃ 1.1131784416.7
    Sawdust[10]KOH/1000 ℃1.272254303.03
    Bamboo shoots[11]KHCO3/700 ℃/800 ℃ 0.73/1.251476/2271458
    Bagasse/Cluster stalks[12]KOH/1300 ℃0.82/1.41861/2662714.3/925.9
    This workKOH/800 ℃/900 ℃1.829/3.1643366/3600919/983
    Table 1.

    Comparison of activator, SSABET, total pore volume and qm (the maximum adsorption of MB) between RHACs and other AC prepared from biomass

    CarbonYP-80RHAC600RHAC700RHAC800RHAC900
    ID: IG0.9970.9921.0171.0251.020
    SSABET/(m2•g-1) 13102380317333663600
    Pore volumetotal/(cm3•g-1) 0.8161.3521.7331.8293.164
    Micropore volume/(cm3•g-1) 0.5160.3930.4290.6060.537
    Adsorption limit/(mg•g-1) 525851935919983
    Table 1.

    The ratio of ID to IG, SSABET, pore volumestotal, micropore volumes and adsorption limits of RHACs and YP-80

    Sampleqe(exp)/(mg•g-1) q1(cal)/(mg•g-1) Percentual difference, (qe-q1)/% k1/min-1
    YP-8052519.896.230.0192
    RHAC600851438.848.440.0614
    RHAC70093585.990.810.0231
    RHAC80091925971.820.0433
    RHAC9009838990.950.0347
    Table 2.

    Kinetic parameters obtained by the pseudo-first-order model for RHACs and YP-80 for the adsorption of MB

    Sampleqe (exp)/ (mg•g-1) q2(cal)/ (mg•g-1) Percentual difference (qe-q2)/% k2/(g•mg-1•min-1)
    YP-80525526.3-0.250.0090
    RHAC600851833.32.080.0006
    RHAC700935833.310.880.0018
    RHAC800919909.11.080.0007
    RHAC9009831000-1.730.0025
    Table 2.

    Kinetic parameters obtained of RHACs and YP-80 by the pseudo-second-order model for the adsorption of MB

    RHBCRHAC600RHAC700RHAC800RHAC900
    C19.4895.1897.2194.1695.63
    O35.594.822.793.152.28
    Si40.730000
    Ca0.10000
    Table 3.

    Element analysis of RHBC, RHAC600, RHAC700, RHAC800 and RHAC900 by EDS/wt%

    RHRHBCRHAC600RHAC700RHAC800RHAC900
    Before/mg2502.01002.4148.176.388.753.9
    After/mg375.0330.00000
    Ash content/%14.9932.92
    Table 4.

    Mass and ash content of RH, RHBC, RHAC600, RHAC700, RHAC800 and RHAC900 before and after calcination

    Fan ZHOU, Hui BI, Fuqiang HUANG. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue[J]. Journal of Inorganic Materials, 2020, 36(8): 893
    Download Citation