• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 8, 2589 (2022)
WAN Rui1、2, YANG Liqing1, HUO Weirong3, MA Yuan1、2, LI Shengwu1、2, GUO Chen1、2, and WANG Pengfei1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    WAN Rui, YANG Liqing, HUO Weirong, MA Yuan, LI Shengwu, GUO Chen, WANG Pengfei. Research Progress of Mid-Infrared Tellurite Glass and Optical Fibers[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2589 Copy Citation Text show less
    References

    [1] HWA L G, CHANG Y R, CHAO W C. Infrared spectra of lanthanum gallogermanate glasses[J]. Materials Chemistry and Physics, 2004, 85(1): 158-162.

    [2] CANALIAS C, PASISKEVICIUS V. Mirrorless optical parametric oscillator[J]. Nature Photonics, 2007, 1(8): 459-462.

    [3] BARANOV A N, IMENKOV A N, SHERSTNEV V V, et al. 2.7-3.9 μm InAsSb(P)/InAsSbP low threshold diode lasers[J]. Applied Physics Letters, 1994, 64(19): 2480-2482.

    [7] ZHANG L F, GUAN F, ZHANG L, et al. Next generation mid-infrared fiber: fluoroindate glass fiber[J]. Optical Materials Express, 2022, 12(4): 1683.

    [8] WANG J S, VOGEL E M, SNITZER E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3): 187-203.

    [9] MORI A, OHISHI Y, SUDO S. Erbium-doped tellurite glass fibre laser and amplifier[J]. Electronics Letters, 1997, 33(10): 863.

    [10] AITKEN B G, ELLISON A J G. Tellurite glasses and optical components: US6194334[P]. 2001-02-27.

    [11] SHEN S, NAFTALY M, JHA A, et al. Thulium-doped tellurite glasses for S-band amplification[C]//OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171). March 17-22, 2001, Anaheim, CA, USA. IEEE, 2001: TuQ6.

    [12] ZHAO Z P, YAO C F, LI Z R, et al. 8.08 W holmium doped fluorotellurite fiber laser at 2 067 nm[J]. Laser Physics Letters, 2019, 16(11): 115101.

    [13] WANG W C, YUAN J, LI L X, et al. Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications[J]. Optical Materials Express, 2015, 5(12): 2964.

    [14] TIAN Y, LI B P, WANG J R, et al. The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes[J]. Journal of Luminescence, 2019, 214: 116586.

    [15] FENG X, TANABE S, HANADA T. Hydroxyl groups in erbium-doped germanotellurite glasses[J]. Journal of Non-Crystalline Solids, 2001, 281(1/2/3): 48-54.

    [16] HUMBACH O, FABIAN H, GRZESIK U, et al. Analysis of OH absorption bands in synthetic silica[J]. Journal of Non-Crystalline Solids, 1996, 203: 19-26.

    [17] FRANCE P W, CARTER S F, WILLIAMS J R, et al. OH-absorption in fluoride glass infra-red fibres[J]. Electronics Letters, 1984, 20(14): 607.

    [18] LI K R, ZHANG L L, YUAN Y, et al. Influence of different dehydration gases on physical and optical properties of tellurite and tellurium-tungstate glasses[J]. Applied Physics B, 2016, 122(4): 1-7.

    [20] CHURBANOV' M F, MOISEEV A N, CHILYASOV A V, et al. Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH- groups[J]. Journal of Optoelectronics and Advanced Materials, 2007, 9(10): 3229-3234.

    [21] KRMER F W. Solubility of gases in glass melts[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1996, 100(9): 1512-1514.

    [22] WANG W C, ZHOU B, XU S H, et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 2019, 101: 90-171.

    [23] MASSERA J, HALDEMAN A, JACKSON J, et al. Processing of tellurite-based glass with low OH content[J]. Journal of the American Ceramic Society, 2011, 94(1): 130-136.

    [24] EBENDORFF-HEIDEPRIEM H, KUAN K, OERMANN M R, et al. Extruded tellurite glass and fibers with low OH content for mid-infrared applications[J]. Optical Materials Express, 2012, 2(4): 432.

    [25] YU C L, DAI S X, ZHOU G, et al. Influence of OH- on the spectral properties in Er3+-doped tellurite glass[J]. Science in China Series E-Engineering & Materials Science, 2005, 35(9): 924-933.

    [26] MORI A. Tellurite-based fibers and their applications to optical communication networks[J]. Journal of the Ceramic Society of Japan, 2008, 116(1358): 1040-1051.

    [27] MORI A, KOBAYASHI K, YAMADA M, et al. Low noise broadband tellurite-based Er3+-doped fibre amplifiers[J]. Electronics Letters, 1998, 34(9): 887.

    [29] DOROFEEV V V, MOISEEV A N, CHURBANOV M F, et al. High-purity TeO2-WO3-(La2O3, Bi2O3) glasses for fiber-optics[J]. Optical Materials, 2011, 33(12): 1911-1915.

    [30] MOISEEV A N, DOROFEEV V V, CHILYASOV A V, et al. Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses[J]. Optical Materials, 2011, 33(12): 1858-1861.

    [31] FENG X, SHI J D, SEGURA M, et al. Halo-tellurite glass fiber with low OH content for 2~5 μm mid-infrared nonlinear applications[J]. Optics Express, 2013, 21(16): 18949-18954.

    [32] SHI H X, FENG X, TAN F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12): 3967.

    [33] BOIVIN M, EL-AMRAOUI M, POLIQUIN S, et al. Advances in methods of purification and dispersion measurement applicable to tellurite-based glasses[J]. Optical Materials Express, 2016, 6(4): 1079.

    [34] O’DONNELL M D, MILLER C A, FURNISS D, et al. Fluorotellurite glasses with improved mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 2003, 331(1/2/3): 48-57.

    [35] RHONEHOUSE D L, ZONG J, NGUYEN D, et al. Low loss, wide transparency, robust tellurite glass fibers for mid-IR (2~5 μm) applications[C]//SPIE Security+Defence. Proc SPIE 8898, Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems, Dresden, Germany. 2013, 8898: 58-65.

    [36] JIA S J, YAO C F, ZHAO Z P, et al. Flat supercontinuum generation from 1 028~2 804 nm in an all-solid fluorotellurite fiber[J]. Laser Physics Letters, 2018, 15(11): 115104.

    [37] LIN A X, RYASNYANSKIY A, TOULOUSE J. Fabrication and characterization of a water-free mid-infrared fluorotellurite glass[J]. Optics Letters, 2011, 36(5): 740-742.

    [38] LEZAL D, PEDLIKOVA J, KOSTKA P, et al. Heavy metal oxide glasses: preparation and physical properties[J]. Journal of Non-Crystalline Solids, 2001, 284(1/2/3): 288-295.

    [39] LIAO G H, CHEN Q P, XING J J, et al. Preparation and characterization of new fluorotellurite glasses for photonics application[J]. Journal of Non-Crystalline Solids, 2009, 355(7): 447-452.

    [40] YATSENKO Y P, NAZARYANTS V O, KOSOLAPOV A F, et al. Dispersion and guidance characteristics of microstructured 68TeO2-22WO3-8La2O3-2Bi2O3 glass fibres for supercontinuum generation[J]. Quantum Electronics, 2010, 40(6): 513-518.

    [41] JOSHI P, RICHARDS B, JHA A. Reduction of OH- ions in tellurite glasses using chlorine and oxygen gases[J]. Journal of Materials Research, 2013, 28(23): 3226-3233.

    [42] YUE J, XUE T F, HUANG F F, et al. Thermally stable mid-infrared fluorotellurite glass with low OH content[J]. Journal of Non-Crystalline Solids, 2015, 408: 1-6.

    [43] PICOT-CLEMENTE J, STRUTYNSKI C, AMRANI F, et al. Enhanced supercontinuum generation in tapered tellurite suspended core fiber[J]. Optics Communications, 2015, 354: 374-379.

    [44] YAO C F, JIA Z X, LI Z R, et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 2018, 5(10): 1264.

    [45] KARABULUT M, MARASINGHE G K, CLICK C A, et al. XAFS investigation of platinum impurities in phosphate glasses[J]. Journal of the American Ceramic Society, 2002, 85(5): 1093-1099.

    [46] KHONTHON S, MORIMOTO S, ARAI Y, et al. Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics[J]. Journal of the Ceramic Society of Japan, 2007, 115(1340): 259-263.

    [47] POLOSAN S. Structure and low field magnetic properties in phosphate-tellurite glasses[J]. Journal of Non-Crystalline Solids, 2019, 524: 119651.

    [48] WANG P F, NG A K L, DOWLER A, et al. Development of low-loss lead-germanate glass for mid-infrared fiber optics: Ⅱ. preform extrusion and fiber fabrication[J]. Journal of the American Ceramic Society, 2021, 104(2): 833-850.

    [49] DSVDAVY F, STRUTYNSKI C, LEMIRE A, et al. Review of tellurite glasses purification issues for mid-IR optical fiber applications[J]. Journal of the American Ceramic Society, 2020, 103(8): 4017-4034.

    [50] WANG P F, BEI J F, AHMED N, et al. Development of low-loss lead-germanate glass for mid-infrared fiber optics: I. glass preparation optimization[J]. Journal of the American Ceramic Society, 2021, 104(2): 860-876.

    [51] DINERMAN B J, MOULTON P F. 3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145.

    [52] JENSEN T, CHAI B H T, DIENING A, et al. Investigation of diode-pumped 2.8-μm Er∶LIYF4 lasers with various doping levels[J]. Optics Letters, 1996, 21(8): 585.

    [53] TANIGUCHI A, KUWAYAMA T, SHIRAKAWA A, et al. 1 212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser[J]. Applied Physics Letters, 2002, 81(20): 3723-3725.

    [55] WANG C Z, TIAN Y, GAO X Y, et al. Mid-infrared fluorescence properties, structure and energy transfer around 2 μm in Tm3+/Ho3+ co-doped tellurite glass[J]. Journal of Luminescence, 2018, 194: 791-796.

    [56] YANG X L, WANG W C, ZHANG Q Y. BaF2 modified Cr3+/Ho3+ co-doped germanate glass for efficient 2.0 μm fiber lasers[J]. Journal of Non-Crystalline Solids, 2018, 482: 147-153.

    [57] RICHARDS B D O, TSANG Y H, BINKS D J, et al. Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser[C]//SPIE Remote Sensing. Proc SPIE 6750, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, Florence, Italy. 2007, 6750: 41-49.

    [58] TSANG Y, RICHARDS B, BINKS D, et al. Tm3+/Ho3+ codoped tellurite fiber laser[J]. Optics Letters, 2008, 33(11): 1282-1284.

    [59] WANG S B, YAO C F, JIA Z X, et al. 1 887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers[J]. Optical Materials, 2017, 66: 640-643.

    [60] LI K F, ZHANG G, WANG X, et al. Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser[J]. Optics Express, 2012, 20(9): 10115.

    [61] LI K F, ZHANG G, HU L L. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber[J]. Optics Letters, 2010, 35(24): 4136-4138.

    [62] GOMES L, LOUSTEAU J, MILANESE D, et al. Energy transfer and energy level decay processes in Tm3+-doped tellurite glass[J]. Journal of Applied Physics, 2012, 111(6): 063105.

    [63] MURAVYEV S V, ANASHKINA E A, ANDRIANOV A V, et al. Dual-band Tm3+-doped tellurite fiber amplifier and laser at 1.9 μm and 2.3 μm[J]. Scientific Reports, 2018, 8: 16164.

    [64] LI D H, XU W B, KUAN P W, et al. Spectroscopic and laser properties of Ho3+ doped lanthanum-tungsten-tellurite glass and fiber[J]. Ceramics International, 2016, 42(8): 10493-10497.

    [65] YAO C F, HE C F, JIA Z X, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing[J]. Optics Letters, 2015, 40(20): 4695-4698.

    [66] RICHARDS B, TSANG Y, BINKS D, et al. ~2 μm Tm3+/Yb3+-doped tellurite fibre laser[J]. Journal of Materials Science: Materials in Electronics, 2009, 20(1): 317-320.

    [67] KUAN P W, LI K F, ZHANG L, et al. All-fiber passively Q-switched laser based on Tm3-doped tellurite fiber[J]. IEEE Photonics Technology Letters, 2015, 27(7): 689-692.

    [68] GAO S, KUAN P W, LIU X Q, et al. ~2 μm single-mode laser output in Tm3+-doped tellurium germanate double-cladding fiber[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1702-1704.

    [69] LI L X, WANG W C, ZHANG C F, et al. 2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser[J]. Optical Materials Express, 2016, 6(9): 2904.

    [70] ZHOU D C, BAI X M, ZHOU H. Preparation of Ho3+/Tm3+ co-doped lanthanum tungsten germanium tellurite glass fiber and its laser performance for 2.0 μm[J]. Scientific Reports, 2017, 7: 44747.

    [71] DENKER B I, DOROFEEV V V, GALAGAN B I, et al. 2.3 μm laser action in Tm3+-doped tellurite glass fiber[J]. Laser Physics Letters, 2019, 16(1): 015101.

    [72] DENKER B I, DOROFEEV V V, GALAGAN B I, et al. 50 mW tellurite glass fiber laser at 2.3 microns[C]//2020 International Conference Laser Optics (ICLO). November 2-6, 2020, St. Petersburg, Russia. IEEE, 2020: 1.

    [73] DENKER B I, DOROFEEV V V, GALAGAN B I, et al. A 200 mW, 2.3 μm Tm3+-doped tellurite glass fiber laser[J]. Laser Physics Letters, 2020, 17(9): 095101.

    [74] OERMANN M R, EBENDORFF-HEIDEPRIEM H, LI Y H, et al. Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass[J]. Optics Express, 2009, 17(18): 15578-15584.

    [75] GOMES L, OERMANN M, EBENDORFF-HEIDEPRIEM H, et al. Energy level decay and excited state absorption processes in erbium-doped tellurite glass[J]. Journal of Applied Physics, 2011, 110(8): 083111.

    [76] WANG R S, MENG X W, YIN F X, et al. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications[J]. Optical Materials Express, 2013, 3(8): 1127.

    [77] XUE T F, LI Y, LIU Y Y, et al. High thermal stability and intense 2.71 μm emission in Er3+-doped fluorotellurite glass modified by GaF3[J]. Optical Materials, 2018, 75: 367-372.

    [78] GUO Y Y, TIAN Y, ZHANG L Y, et al. Erbium doped heavy metal oxide glasses for mid-infrared laser materials[J]. Journal of Non-Crystalline Solids, 2013, 377: 119-123.

    [79] ZHANG F F, ZHANG W J, YUAN J, et al. Enhanced 2.7 μm emission from Er3+ doped oxyfluoride tellurite glasses for a diode-pump mid-infrared laser[J]. AIP Advances, 2014, 4(4): 047101.

    [80] GUO Y Y, LI M, TIAN Y, et al. Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses[J]. Journal of Applied Physics, 2011, 110(1): 013512.

    [81] WANG C Z, TIAN Y, GAO X Y, et al. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations[J]. Optics Express, 2017, 25(23): 29512.

    [82] ZHAN H, ZHANG A D, HE J L, et al. Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses[J]. Journal of Alloys and Compounds, 2014, 582: 742-746.

    [83] MA H P, TIAN Y, LIU Q H, et al. 2.75 μm spectroscopic properties and energy transfer mechanism in Er/Ho codoped fluorotellurite glasses[J]. Journal of Alloys and Compounds, 2018, 744: 502-506.

    [84] GOMES L, MILANESE D, LOUSTEAU J, et al. Energy level decay processes in Ho3+-doped tellurite glass relevant to the 3 μm transition[J]. Journal of Applied Physics, 2011, 109(10): 103110.

    [85] ZHANG J J, LU Y, CAI M Z, et al. Highly efficient 2.84 μm emission in Ho3+/Yb3+ co-doped tellurite-germanate glass for mid-infrared laser materials[J]. IEEE Photonics Technology Letters, 2017, 29(17): 1498-1501.

    [86] WAN R, WANG P F, LI S W, et al. 2.86 μm emission and fluorescence enhancement through controlled precipitation of ZnTe nanocrystals in DyF3 doped multicomponent tellurite oxyfluoride glass[J]. Journal of Non-Crystalline Solids, 2021, 564: 120842.

    [87] WANG C Z, TIAN Y, LI H H, et al. Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+/Tm3+ co-doped tellurite glass[J]. Infrared Physics & Technology, 2017, 85: 128-132.

    [88] ANASHKINA E A, DOROFEEV V V, MURAVYEV S V, et al. Possibilities of laser amplification and measurement of the field structure of ultrashort pulses in the range of 2.7~3 μm in tellurite glass fibres doped with erbium ions[J]. Quantum Electronics, 2018, 48(12): 1118-1127.

    [89] ANASHKINA E A, ANDRIANOV A V, DOROFEEV V V, et al. Two-color pump schemes for Er-doped tellurite fiber lasers and amplifiers at 2.7~2.8 μm[J]. Laser Physics Letters, 2019, 16(2): 025107.

    [90] ANASHKINA E A, DOROFEEV V V, KOLTASHEV V V, et al. Development of Er3+-doped high-purity tellurite glass fibers for gain-switched laser operation at 2.7 μm[J]. Optical Materials Express, 2017, 7(12): 4337.

    [91] MA Y Y, GUO Y Y, HUANG F F, et al. Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials[J]. Journal of Luminescence, 2014, 147: 372-377.

    [93] CHEN F Z, XU S Q, WEI T, et al. Mid-infrared emission and Raman spectra analysis of Er3+-doped oxyfluorotellurite glasses[J]. Applied Optics, 2015, 54(11): 3345-3352.

    [94] CHEN F Z, WEI T, JING X F, et al. Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass[J]. Scientific Reports, 2015, 5: 10676.

    [95] YIN D D, YANG F J, WU L B, et al. Enhanced 2.7 μm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ codoped tellurite glass[J]. Journal of Alloys and Compounds, 2015, 618: 666-672.

    [96] ANASHKINA E A, ANDRIANOV A V, DOROFEEV V V, et al. Development of infrared fiber lasers at 1 555 nm and at 2 800 nm based on Er-doped zinc-tellurite glass fiber[J]. Journal of Non-Crystalline Solids, 2019, 525: 119667.

    [97] LIU J L, XIAO Y B, HUANG S J, et al. The glass-forming region and 2.7 μm emission of Er3+-doped TeO2-Ta2O5-ZnO tellurite glass[J]. Journal of Non-Crystalline Solids, 2019, 522: 119564.

    [98] FU W B, ZHANG C M, HOU G N, et al. Enhanced fluorescence emission of 2.7 μm from high thermal stability Er3+/Bi3+ co-doped tellurite glasses for mid-infrared lasers[J]. Optik, 2019, 182: 308-313.

    [99] WANG W C, MAO L Y, LIU J L, et al. Glass-forming regions and enhanced 2.7 μm emission by Er3+ heavily doping in TeO2-Ga2O3-R2O (or MO) glasses[J]. Journal of the American Ceramic Society, 2020, 103(9): 4999-5012.

    [100] WAN R, WANG P F, LI S W, et al. Spectroscopic properties of ErF3 doped tellurite-gallium oxyfluoride glass for ~3 μm laser materials[J]. Journal of Applied Physics, 2021, 129(15): 153105.

    WAN Rui, YANG Liqing, HUO Weirong, MA Yuan, LI Shengwu, GUO Chen, WANG Pengfei. Research Progress of Mid-Infrared Tellurite Glass and Optical Fibers[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2589
    Download Citation