• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802019 (2021)
Fengqiang Weng, Yongqiang Yang*, Xin Chen, and Yang Li
Author Affiliations
  • School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
  • show less
    DOI: 10.3788/CJL202148.1802019 Cite this Article Set citation alerts
    Fengqiang Weng, Yongqiang Yang, Xin Chen, Yang Li. Printing-Time-Estimation Algorithm for Selective Laser Melting Multi-Galvanometer System[J]. Chinese Journal of Lasers, 2021, 48(18): 1802019 Copy Citation Text show less
    References

    [1] Yang Y Q, Wei H M. Present situation and development of laser additive manufacturing equipment[J]. Electric Welding Machine, 51, 17-22, 119(2021).

    [2] Jiang H Y, Lin W K, Wu S B et al. Application status and development trend of laser selective melting technology[J]. Mechanical Engineering & Automation, 223-226(2019).

    [3] Wang Z G, Ma F, Chen S B. A gas circulation purification continuity of operation equipment for laser selective melting makes: CN108115130A[P](2018).

    [4] Zhang Y. Research on quality monitoring of selective laser melting process based on machine vision[D](2020).

    [5] Barnes A H, Vanessa V, Shepherd M A. Temperature control in additive manufacturing systems: CN112020417A[P](2020).

    [6] Guo Y, Long X H, Liu M et al. Research status of metal powder for powder bed melting additive manufacturing[J]. China Building Materials Science & Technology, 30, 6-10(2021).

    [7] Zhang Z L, Song M, Hou J Y. Research status of metal materials for additive manufacturing[J]. China Building Materials Science & Technology, 30, 1-5(2021).

    [8] Hu Z H, Song C H, Liu L Q et al. Research progress of selective laser melting of nitinol[J]. Chinese Journal of Lasers, 47, 1202005(2020).

    [9] Zhao Y, Song Z M, Jin J B et al. Electrochemical corrosion properties of Ti-5%TiN composites formed by selective laser melting in Hank’s solution[J]. Chinese Journal of Lasers, 46, 0902005(2019).

    [10] Duan S Q, Liu T T, Liao W H et al. Research on forming quality of overhanging round hole by selective laser melting[J]. Chinese Journal of Lasers, 45, 0402007(2018).

    [12] Lindemann C, Jahnke U, Moi M et al. Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing[C]. //In 23rd Annual International Solid Freeform Fabrication Symposium proceedings, August 8, 2012, Austin, TX, USA, 177-188(2012).

    [13] Kopf R, Gottwald J, Jacob A et al. Cost-oriented planning of equipment for selective laser melting (SLM) in production lines[J]. CIRP Annals, 67, 471-474(2018).

    [14] Baumers M, Tuck C, Wildman R et al. Combined build-time, energy consumption and cost estimation for direct metal laser sintering[C]. //In 23rd Annual International Solid Freeform Fabrication Symposium proceedings, August 8, 2012, Austin, TX, USA, 932-944(2012).

    [15] Zhou T R, Xu C H, Zhang Y et al. The modifying and information distilling of the STL slice before outputting CLI[J]. Journal of Nanchang University (Engineering & Technology), 29, 364-367(2007).

    [16] Wang W Y, Lu Y, Chen Q S et al. Design and implementation XY2-100 galvanometer control protocol conversion board[J]. Automation & Instrumentation, 147-148,151(2014).

    [17] Dong W J. Fiber laser marking technology and experimental research[D](2014).

    [18] Lu J. Composition principle of fiber laser marking machine and application[J]. Laser Journal, 34, 41-42(2013).

    [19] Zhang Y H, Lu Y. Research on the principle of laser marking and development[J]. Automation & Instrumentation, 33-34, 37(2014).

    [20] Li Y G. 3D printing method based on multiple galvanometers: CN111070685A[P](2020).

    [21] Chen H Q, Liu X Y, Pan L M et al. Multi-galvanometer scanning control method, device, computer device and storage medium: CN108790180B[P](2018).

    [22] Dong Y. Accuracy analysis and error compensation of beam direction control system based on scanning galvanometer[D](2019).

    [23] Wang T, Yang S M, Li S S et al. Error analysis and compensation of galvanometer laser scanning measurement system[J]. Acta Optica Sinica, 40, 2315001(2020).

    [24] Xu Y P, Tao X H. Effect of scanner’s structure on accuracy and speed[J]. Applied Laser, 18, 169-170(1998).

    [25] Chen G, Yuan C, Tian K H. Large-format multi-galvanometer laser device: CN110026679A[P](2019).

    [26] Song C H, Wang A M, Yang Y Q et al. Mobile hopper type bidirectional powder spreading device of selective laser melting (SLM) equipment: CN206104881U[P](2017).

    [27] Song C H. Selective laser melting single-knife two-way powder laying device and selective laser melting equipment: CN105921748A[P](2016).

    [28] Qiang X H. Research on scanning path optimization algorithm for laser selective melting[D](2018).

    [29] Ma Q. Study on the path planning technology of selective double-laser melting[D](2018).

    [30] Deng S S, Yang Y Q, Li Y et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 43, 1202003(2016).

    [31] Ge Y N, Wu M P, Mao Y Y et al. Effect of scanning strategy on forming precision of titanium alloy by selective laser melting[J]. Laser & Optoelectronics Progress, 55, 091403(2018).

    Fengqiang Weng, Yongqiang Yang, Xin Chen, Yang Li. Printing-Time-Estimation Algorithm for Selective Laser Melting Multi-Galvanometer System[J]. Chinese Journal of Lasers, 2021, 48(18): 1802019
    Download Citation