• Special Issue
  • Special Issue on Inertial Confinement Fusion
  • 4 Article (s)
A high-pinning-Type-II superconducting maglev for ICF target delivery: main principles, material options and demonstration models|On the Cover
I. V. Aleksandrova, E. R. Koresheva, and E. L. Koshelev
Nowadays, inertial confinement fusion (ICF) research related to noncontact positioning and transport of free-standing cryogenic targets is playing an increasingly important role in this field. The operational principle behind these technologies is the magnetic acceleration of the levitating target carrier (or sabot) made from Type-II, high-temperature superconductors (HTSCs). The physics of interaction among levitation, guidance and propulsion systems is based on a quantum levitation of high-pinning HTSCs in the mutually normal magnetic fields. This paper discusses current target delivery strategies and future perspectives to create different permanent magnet guideway (PMG) systems for ICF target transport with levitation. In particular, several PMG building options for optimizing both suspension and levitation of ICF targets using an HTSC-sabot will be analyzed. Credible solutions have been demonstrated for both linear and round PMGs, including the ones with a cyclotron acceleration process to realize high-running velocities of the HTSC-sabot for a limited magnetic track. Focusing on physics, we describe in detail the main aspects of the PMG building and the results obtained from computations and proof of principle experiments. High-pinning HTSC magnetic levitation promises a stable and self-controlled levitation to accelerate the ICF targets placed in the HTSC-sabots up to the required injection velocities of 200 m/s and beyond.
High Power Laser Science and Engineering
  • Publication Date: Jan. 01, 2022
  • Vol. 10, Issue 2, 02000e11 (2022)
Multibeam laser–plasma interaction at the Gekko XII laser facility in conditions relevant for direct-drive inertial confinement fusion
G. Cristoforetti, P. Koester, S. Atzeni, D. Batani, S. Fujioka, Y. Hironaka, S. Hüller, T. Idesaka, K. Katagiri, K. Kawasaki, R. Kodama, D. Mancelli, Ph. Nicolai, N. Ozaki, A. Schiavi, K. Shigemori, R. Takizawa, T. Tamagawa, D. Tanaka, A. Tentori, Y. Umeda, A. Yogo, and L. A. Gizzi
Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion. The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately $3\times {10}^{15}$ W/cm2. Experimental data suggest that high-energy electrons, with temperatures of 20–50 keV and conversion efficiencies of $\eta , were mainly produced by the damping of electron plasma waves driven by two-plasmon decay (TPD). Stimulated Raman scattering (SRS) is observed in a near-threshold growth regime, producing a reflectivity of approximately $0.01\%$ , and is well described by an analytical model accounting for the convective growth in independent speckles. The experiment reveals that both TPD and SRS are collectively driven by multiple beams, resulting in a more vigorous growth than that driven by single-beam laser intensity.
High Power Laser Science and Engineering
  • Publication Date: Feb. 20, 2023
  • Vol. 11, Issue 2, 02000e24 (2023)
An evaluation of sustainability and societal impact of high-power laser and fusion technologies: a case for a new European research infrastructure
S. Atzeni, D. Batani, C. N. Danson, L. A. Gizzi, M. Perlado, M. Tatarakis, V. Tikhonchuk, and L. Volpe
Fusion energy research is delivering impressive new results emerging from different infrastructures and industrial devices evolving rapidly from ideas to proof-of-principle demonstration and aiming at the conceptual design of reactors for the production of electricity. A major milestone has recently been announced in laser fusion by the Lawrence Livermore National Laboratory and is giving new thrust to laser-fusion energy research worldwide. Here we discuss how these circumstances strongly suggest the need for a European intermediate-energy facility dedicated to the physics and technology of laser-fusion ignition, the physics of fusion materials and advanced technologies for high-repetition-rate, high-average-power broadband lasers. We believe that the participation of the broader scientific community and the increased engagement of industry, in partnership with research and academic institutions, make most timely the construction of this infrastructure of extreme scientific attractiveness.
High Power Laser Science and Engineering
  • Publication Date: Jan. 01, 2021
  • Vol. 9, Issue 4, 04000e52 (2021)

Special Issue on Inertial Confinement Fusion|Calls for papers!