• Chinese Journal of Lasers
  • Vol. 49, Issue 10, 1002602 (2022)
Chengjuan Yang1、2, Xue Yang1、2、*, Meng Wang1、2, Fujun Wang1、2, Beichao Shi1、2, and Xinyao Zhu1、2
Author Affiliations
  • 1School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/CJL202249.1002602 Cite this Article Set citation alerts
    Chengjuan Yang, Xue Yang, Meng Wang, Fujun Wang, Beichao Shi, Xinyao Zhu. Application of Bionic Superhydrophobic Surface in Jaw End Face of Microgripper[J]. Chinese Journal of Lasers, 2022, 49(10): 1002602 Copy Citation Text show less
    References

    [1] Sam E K, Sam D K, Lü X M et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 373, 531-546(2019).

    [2] Zhan Y L, Ruan M, Li W et al. Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior[J]. Colloids and Surfaces A, 535, 8-15(2017).

    [3] Pan Q F, Cao Y, Xue W et al. Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property[J]. Langmuir, 35, 11414-11421(2019).

    [4] Latthe S S, Terashima C, Nakata K et al. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf[J]. Molecules, 19, 4256-4283(2014).

    [5] Bai H, Zhang L, Gu D. Micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings[J]. Applied Surface Science, 459, 54-62(2018).

    [6] Tie L, Guo Z G, Liu W M. Anisotropic wetting properties on various shape of parallel grooved microstructure[J]. Journal of Colloid and Interface Science, 453, 142-150(2015).

    [7] Yang L, Shen X D, Yang Q et al. Fabrication of biomimetic anisotropic super-hydrophobic surface with rice leaf-like structures by femtosecond laser[J]. Optical Materials, 112, 110740(2021).

    [8] Gao F, Yao Y, Wang W et al. Light-driven transformation of bio-inspired superhydrophobic structure via reconfigurable PAzoMA microarrays: from lotus leaf to rice leaf[J]. Macromolecules, 51, 2742-2749(2018).

    [9] May R M, Magin C M, Mann E E et al. An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters[J]. Clinical and Translational Medicine, 4, e9(2015).

    [10] Liu Y B, Gu H M, Jia Y et al. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP[J]. Chemical Engineering Journal, 356, 318-328(2019).

    [11] Bixler G D, Bhushan B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects[J]. Soft Matter, 8, 11271(2012).

    [12] Ivanova E P, Hasan J, Webb H K et al. Bactericidal activity of black silicon[J]. Nature Communications, 4, 2838(2013).

    [13] Ivanova E P, Hasan J, Webb H K et al. Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings[J]. Small, 8, 2489-2494(2012).

    [14] Nguyen S H T, Webb H K, Hasan J et al. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings[J]. Colloids and Surfaces B, 106, 126-134(2013).

    [15] Li J, Wang W J, Mei X S et al. Designable ultratransparent and superhydrophobic surface of embedded artificial compound eye with extremely low adhesion[J]. ACS Applied Materials & Interfaces, 12, 53557-53567(2020).

    [16] Li J, Wang W J, Zhu R X et al. Superhydrophobic artificial compound eye with high transparency[J]. ACS Applied Materials & Interfaces, 13, 35026-35037(2021).

    [17] Yu C M, Sasic S, Liu K et al. Nature-inspired self-cleaning surfaces: mechanisms, modelling, and manufacturing[J]. Chemical Engineering Research and Design, 155, 48-65(2020).

    [18] Liu K S, Jiang L. Bio-inspired self-cleaning surfaces[J]. Annual Review of Materials Research, 42, 231-263(2012).

    [19] Maurer J A, Miller M J, Bartolucci S F. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating[J]. Journal of Colloid and Interface Science, 524, 204-208(2018).

    [20] Gu Y Q, Zhang W Q, Mou J G et al. Research progress of biomimetic superhydrophobic surface characteristics, fabrication, and application[J]. Advances in Mechanical Engineering, 9, 1-13(2017).

    [21] Xie H, Régnier S. Development of a flexible robotic system for multiscale applications of micro/nanoscale manipulation and assembly[J]. IEEE/ASME Transactions on Mechatronics, 16, 266-276(2011).

    [22] Long Z L, Zhang J G, Liu Y C et al. Dynamics modeling and residual vibration control of a piezoelectric gripper during wire bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7, 2045-2056(2017).

    [23] Zimmermann S, Tiemerding T, Fatikow S. Automated robotic manipulation of individual colloidal particles using vision-based control[J]. IEEE/ASME Transactions on Mechatronics, 20, 2031-2038(2015).

    [24] Wang F J, Liang C M, Tian Y L et al. Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation[J]. IEEE/ASME Transactions on Mechatronics, 21, 1262-1271(2016).

    [25] Wang R Z, Zhang X M. Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system[J]. IEEE Transactions on Industrial Electronics, 65, 2388-2397(2018).

    [26] Kim B S, Park J S, Kang B H et al. Fabrication and property analysis of a MEMS micro-gripper for robotic micro-manipulation[J]. Robotics and Computer-Integrated Manufacturing, 28, 50-56(2012).

    [27] Han K, Lee S H, Moon W et al. Design and fabrication of the micro-gripper for manipulating the cell[J]. Integrated Ferroelectrics, 89, 77-86(2007).

    [28] Shao G B, Ware H O T, Huang J G et al. 3D printed magnetically-actuating micro-gripper operates in air and water[J]. Additive Manufacturing, 38, 101834(2021).

    [29] Gaafar E, Member I S, Zarog M. A low-stress and low temperature gradient microgripper for biomedical applications[J]. Microsystem Technologies, 23, 5415-5422(2017).

    [30] Rundla V, Khunteta A[C], 1250-1254(2016).

    [31] Nah S K, Zhong Z W. A microgripper using piezoelectric actuation for micro-object manipulation[J]. Sensors and Actuators A, 133, 218-224(2007).

    [32] Feng L B, Yan Z N, Shi X T et al. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys[J]. Applied Physics A, 124, 1-14(2018).

    [33] Li Q Q, Bao X G, Sun J E et al. Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion[J]. Journal of Materials Science, 56, 5233-5249(2021).

    [34] Huang Y, Sarkar D K, Chen X G. Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties[J]. Applied Surface Science, 356, 1012-1024(2015).

    [35] Yang Z, Liu X P, Tian Y L. Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process[J]. Colloids and Surfaces A, 560, 205-212(2019).

    [36] Wang M, Zhang D W, Yang Z et al. A contrastive investigation on the anticorrosive performance of stearic acid and fluoroalkylsilane-modified superhydrophobic surface in salt, alkali, and acid solution[J]. Langmuir, 36, 10279-10292(2020).

    [37] Wang Q H, Wang H X, Wang Z D et al. Highly efficient nanosecond laser-based multifunctional surface fabrication and corrosion resistance performance[J]. Chinese Journal of Lasers, 48, 1402018(2021).

    [38] Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surface and Coatings Technology, 341, 40-56(2018).

    [39] Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials, 23, 719-734(2011).

    [40] Wang D H, Sun Q Q, Hokkanen M J et al. Design of robust superhydrophobic surfaces[J]. Nature, 582, 55-59(2020).

    [41] Long Y F, Yin X X, Mu P et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal, 401, 126137(2020).

    [42] Jiang G C, Pan R, Chen C H et al. Ultrafast laser fabricated drag reduction micro-nano structures and their corrosion resistance[J]. Chinese Journal of Lasers, 47, 0802005(2020).

    [43] Zhao X, Wei J F, Li B C et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 575, 140-149(2020).

    [44] He Z H, Zeng Y W, Zhou M M et al. Superhydrophobic films with enhanced corrosion resistance and self-cleaning performance on an Al alloy[J]. Langmuir, 37, 524-541(2021).

    [45] Yang Z, Liu X P, Tian Y L. Novel metal-organic super-hydrophobic surface fabricated by nanosecond laser irradiation in solution[J]. Colloids and Surfaces A, 587, 124343(2020).

    [46] Zang D M, Xun X W, Gu Z D et al. Fabrication of superhydrophobic self-cleaning manganese dioxide coatings on Mg alloys inspired by lotus flower[J]. Ceramics International, 46, 20328-20334(2020).

    [47] Yang C J, Chao J Q, Zhang J C et al. Functionalized CFRP surface with water-repellence, self-cleaning and anti-icing properties[J]. Colloids and Surfaces A, 586, 124278(2020).

    [48] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).

    [49] Zhang X X, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 3, 12003-12020(2013).

    [50] Guerreiro-Tanomaru J M, Nascimento C A, Faria-Júnior N B et al. Antibiofilm activity of irrigating solutions associated with cetrimide. Confocal laser scanning microscopy[J]. International Endodontic Journal, 47, 1058-1063(2014).

    [51] Yan J, Bassler B L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms[J]. Cell Host & Microbe, 26, 15-21(2019).

    [52] Niu X M, Wan S Q, Rong X N et al. Facile fabrication of povidone iodine-embedded polytetrafluoroethylene superhydrophobic films with improved antiadhesive and bactericidal properties in bacterial environments[J]. Macromolecular Materials and Engineering, 306, 2100193(2021).

    [53] Ishwarya R, Vaseeharan B, Kalyani S et al. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity[J]. Journal of Photochemistry and Photobiology B, 178, 249-258(2018).

    Chengjuan Yang, Xue Yang, Meng Wang, Fujun Wang, Beichao Shi, Xinyao Zhu. Application of Bionic Superhydrophobic Surface in Jaw End Face of Microgripper[J]. Chinese Journal of Lasers, 2022, 49(10): 1002602
    Download Citation