• Journal of Infrared and Millimeter Waves
  • Vol. 32, Issue 4, 351 (2013)
XU Xin-Gang*, ZHAO Chun-Jiang, WANG Ji-Hua, LI Cun-Jun, and YANG Xiao-Dong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3724/sp.j.1010.2013.00351 Cite this Article
    XU Xin-Gang, ZHAO Chun-Jiang, WANG Ji-Hua, LI Cun-Jun, YANG Xiao-Dong. Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 351 Copy Citation Text show less
    References

    [1] Hucklesby D P, Brown C M, Howell S E, et al. Late spring applications of nitrogen for efficient utilization and enhanced production of grain and grain protein in wheat [J]. Agron J, 1971, 63: 274-276.

    [2] Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota [J]. J Plant Nutr, 1998, 21: 217-233.

    [6] Gregory P A. Biophysical and biochemical sources of variability in canopy reflectance [J]. Remote Sens Environ, 1998, 64: 234-253.

    [7] Pu R, Ge S, Kelly N M, et al. Spectral absorption features as indicators of water status in coast live oak (Quevcus agrifolia) leaves [J]. Int J Remote Sens, 2003, 24: 1799-1810.

    [8] Zhang Y, Chen J M, Miller J R, et al. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery [J]. Remote Sens Environ, 2008, 112: 3234-3247.

    [9] Curran P J. Remote sensing of foliar chemistry [J]. Remote Sens Environ, 1989, 30: 271-278.

    [10] Fourty T, Baret F, Jacquemoud S, et al. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems [J]. Remote Sens Environ, 1996, 56: 104-117.

    [11] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression [J]. Remote Sens Environ, 1999, 67: 267-287.

    [12] Elvidge D E. Visible and near infrared reflectance characteristics of dry plant materials [J]. Remote Sens Environ, 1990, 11: 1775-1795.

    [13] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote Sens Environ, 2003, 86: 542-553.

    [15] Feng W, Yao X, Zhu Y, et al. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat [J]. Eur J Agron, 2008, 28: 394-404.

    [16] Chen P, Driss H, Tremblay N, et al. New index for estimating crop nitrogen concentration using hyperspectral data [J]. Remote Sens Environ, 2010, 114: 1987-1997.

    [18] Jongschaap E E, Booij R. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status [J]. Int J Appl Earth Obs Geoinform, 2004, 5: 205-218.

    [19] Wallis K F. Combining forecasts: forty years later [J]. Applied Financial Economics, 2011, 21: 33-41.

    [20] Pu R. Broadleaf species recognition with in situ hyperspectral data [J]. Int J Remote Sens, 2009, 30: 2759-2779.

    [25] Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance [J]. Int J Remote Sens, 1983, 4: 273-288.

    XU Xin-Gang, ZHAO Chun-Jiang, WANG Ji-Hua, LI Cun-Jun, YANG Xiao-Dong. Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 351
    Download Citation